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SSPD Conference 2023 - Welcome 

Dear Colleagues, 

We warmly welcome you to this year’s SSPD Conference. This event is the 12th conference of the 

Sensor Signal Processing for Defence series and provides a chance to present, listen to and discuss 

the latest scientific findings in signal processing for defence.  

A welcome also extends to our keynote and invited speakers as well as our panel speakers from 

Defence, Industry and Academia and the presenters of scientific papers presenting their novel 

research through live oral presentations. We look forward to some interesting debate and discussion 

throughout the conference.  

We would like to take this opportunity to thank the speakers, reviewers, session chairs and the 

technical committee for their contribution to this event.  

We hope you enjoy our conference. 

 

 

 

 

 

 
Technical sponsorship is provided by IEEE Signal Processing Society. Proceedings will be submitted to the 

Xplore Digital Library. The conference is organised by the University Defence Research Collaboration (UDRC) 

in Signal Processing, sponsored by the Defence Science and Technology Laboratory (Dstl) and the Engineering 

and Physical Sciences Research Council (EPSRC).  
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Programme - SSPD2023 
Tuesday 12th September 2023 

 

8:30 to 9:00 Refreshments 

 

Session 1 -Navigation and Tracking- Mike Davies, University of Edinburgh 

9:00 Introduction and Welcome to Day 1/Session 1 – Mike Davies, University of Edinburgh. 

9:10 – 10:10 Keynote Speaker: Instabilities in Navigation - Balancing on the Head of a Pin, Jason 

Ralph, University of Liverpool. 

10:10 – 10:35 Adaptive Kernel Kalman Filter for Magnetic Anomaly Detection-based Metallic Target 

Tracking, Mengwei Sun1, Ian Proudler2, Mike E Davies1, James R Hopgood1, 1University of Edinburgh, 
2University of Strathclyde.  

10:35 – 11:00 Refreshments 

11:00 – 11:25 Implementation of Adaptive Kernel Kalman Filter in Stone Soup, James Wright1, James 

R Hopgood2, Mike E Davies2, Ian Proudler3, Mengwei Sun2, 1Dstl, 2University of Edinburgh, 3University 

of Strathclyde. 

Session 2 - Panel Discussion and Posters – Chair – Jordi Barr - Dstl 

11:25 Introduction and Welcome to Session 2 – Jordi Barr, Dstl  

11:25 – 12:25 Panel Discussion: The Future for Defence Signal Processing. 

12:25 - 14:30 Poster Presentations and Lunch 

 P1. A Lower Complexity Deep Learning Method for Drones Detection, Amal El-Fallah-

Seghrouchni1, Frederic Barbaresco2, Mohamad Kassab3, Raed Abu Zitar4, 1University of Pierre 

and Marie Curie, 2Thales Air Systems, 3Mohamad Bin Zayed University of Artificial 

Intelligence, 4Sorbonne University-Abu Dhabi. 

 P2. Kalman Filter-Based Suspicious Object Tracking for Border Security and Surveillance 

System using Fixed Automotive Radar, Ji-il Park1, SeungHyeon Jo2, Hyung-Tae Seo3, Keun Ha 

Choi4, Jihyuk Park5, Kyung-Soo Kim4, 1Ministry of National Defense, 2DXC Luxoft, 3Kyonggi 

University, 4KAIST, 5Automotive Engineering & Yeungnam University. 

 P3. Joint Learning with Shared Latent Space for Self-Supervised Monaural Speech 

Enhancement, Yi Li1, Yang Sun2, Wenwu Wang3, Syed Mohsen Naqvi4, 1Lancaster University, 
2University of Oxford, 3University of Surrey, 4Newcastle University. 

 P4. Underwater Passive Target Classification based on β Variational Autoencoder and MFCC, 

Adarsh Sunilkumar1, Shamju Joseph K1, Manoj Kumar K1, 1Naval Physical Oceanographic 

Laboratory. 
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 P5. Association based Feedback Aided Underwater Passive Target Tracking, Adarsh 

Sunilkumar1, Shamju Joseph K1, Manoj Kumar K1, 1Naval Physical Oceanographic Laboratory. 

 P6. Computational Enhancement of Accumulated CA-CFAR Process in Side Scan Sonar Data, 

Ansila Veliyathparambil Muhamedali1, Bibin Basheer1, Sooraj K. Ambat1, 1Defence Research 

and Development Organisation. 

 P7. Multi-Target Tracking Using a Swarm of UAVs by Q-learning Algorithm, Seyed Ahmad 

Soleymani1, Shidrokh Goudarzi2, Xingchi Liu3, Lyudmila Mihaylova3, Wenwu Wang1, Pei Xiao1, 
1University of Surrey, 2University of West London, 3University of Sheffield. 

 P8. Generalised Sequential Matrix Diagonalisation for the SVD of Polynomial Matrices, 

Faizan Khattak1, Ian Proudler1, John G McWhirter2, Stephan Weiss1, 1University of 

Strathclyde, 2Cardiff University. 

14:30 Introduction and Welcome to Session 3 – James Hopgood, University of Edinburgh 

14:30 – 15:00 Invited Speaker: Adiabatic computing for low power image sensing, 1Alexandrou Serb, 
1University of Edinburgh. 

Session 3 – Multi-sensor Mult-target Tracking Detection – Chair – James Hopgood – University of 

Edinburgh 

15:00 – 15:25 A Novel Adaptive Architecture: Joint Multi-targets Detection and Clutter Classification, 

Linjie Yan1, Carmine Clemente2, Sudan Han3, Chengpeng Hao1, Danilo Orlando4, Giuseppe Ricci5, 
1Institute of Acoustics, Chinese Academy of Sciences, 2University of Strathclyde,  3National 

Innovation Institute of Defense Technology, 4Universita' degli Studi Niccolo' Cusano, 5University of 

Salento. 

15:25 – 15:45 Refreshments 

15:45 – 16:10 Consensus-based Distributed Variational Multi-object Tracker in Multi-Sensor 

Network, Qing Li1, Runze Gan1, Simon Godsill1, 1University of Cambridge. 

16:10 – 16:35 Joint Sensor Scheduling and Target Tracking with Efficient Bayesian Optimisation, 

Xingchi Liu1, Chenyi Lyu1, Seyed Ahmad Soleymani2, Wenwu Wang2, Lyudmila Mihaylova1, 1University 

of Sheffield, 2University of Surrey. 

16:35 Closing remarks 

---------------------------- 

19:30 Conference Reception Drinks – Royal College of Physicians 

20:00 Conference Dinner  
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Wednesday 13th September 2023 

8:30 to 9:00 Refreshments 

9:00 Introduction and Welcome to Day 2/Session 4 – Images and Video – Steve McLaughlin – Heriot-

Watt University  

9:05 – 10:05 Keynote Speaker: TBC 

10:05 – 10:35 Invited Speakers: Machine Learning for Defence Signal Processing and 

Communications, Kin Leung and Thanos Gkelias, Imperial College London. 

10:35 – 11:05 Refreshments 

Session 4 Images and Video – Chair – Steve McLaughlin, Heriot-Watt University 

11:05 – 11:30 Simulation of Anisoplanatic Turbulence for Images and Videos, David Vint1, Gaetano Di 

Caterina1, Robert Lamb2, David Humphreys2, Paul Kirkland1, 1University of Strathclyde, 2Leonardo. 

11:30 – 11:55 Investigation of an end-to-end neural architecture for image-based source term 

estimation, Abdullah Abdulaziz1, Mike E Davies2, Yoann Altmann1, Steve McLaughlin1, 1Heriot-Watt 

University, 2University of Edinburgh. 

Session 5 – Military Panel Discussion – Chair – Jordi Barr - Dstl 

11:55 Introduction and Welcome to Session 5 – Cdr Nick Jones, Dstl 

11:55 – 12:55 Panel Discussion: Military Panel: Signal processing – the user experience. 

12:55 – 13:55 Lunch 

Session 6 – Sonar, Radar and Maritime – Chair – Gary Heald, Dstl 

13:55 Introduction and Welcome to Session 6 – Gary Heald, Dstl 

13:55 – 14:20 Random Sampling for Robust Detection of Data modulated LFM Waveforms, Kaiyu 

Zhang1, Fraser K Coutts1, John Thompson1, 1University of Edinburgh. 

14:20 – 14:45 Generalised Polynomial Power Method, Faizan Khattak1, Ian Proudler1, Stephan 

Weiss1, 1University of Strathclyde. 

14:45 – 15:10 Refreshments 

15:10 – 15:35 Joint Optimization of Sonar Waveform Selection and Sonobuoy Placement, 

Christopher M Taylor1, Jason F. Ralph1, Simon Maskell1, Alexey Narykov1, 1University of Liverpool. 

15:35 – 16:00 Development of the Line Scatterer Model for Bistatic Wind Turbine Clutter, Juhani 

Nissilä1, Pasi Pertilä1, Minna Väilä1, Juha Jylhä1, 1Patria Aviation Oy. 

16:00 – 16:25 DB-Drift: Concept drift aware density-based anomaly detection for maritime 

trajectories -y, Amelia Henriksen1, 1Sandia National Laboratories. 

16:25 Closing remarks 
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Keynote Speakers 

Prof. Jason Ralph, University of Liverpool 

Jason Ralph received a DPhil degree from the University of 

Sussex (UK) in 1993, and a BSc in Physics with Mathematics 

from the University of Southampton (UK) in 1989. Between 

1992 and 1996 he was employed as a Research Fellow at the 

University of Sussex (UK), the Scuola Normale Superiore (Pisa, 

Italy), and the University of Auckland (New Zealand). He worked 

for the UK Defence Evaluation and Research Agency between 

1997 and 1999, a before taking up a Lecturer position in the 

Department of Electrical Engineering and Electronics at the 

University of Liverpool (UK). He was promoted to Senior 

Lecturer in 2004, a Reader (Associate Professor) in 2007, and a 

Chair in 2013. He was Head of the Department of Electrical 

Engineering and Electronics from 2012 to 2015. His research 

covers quantum technologies and quantum control, infrared 

imaging and image processing, guidance and navigation, and target tracking algorithms. Professor 

Ralph is a Chartered Engineer (CEng), a Fellow of the Royal Aeronautical Society (UK), a Fellow of the 

Institute of Physics (UK), a member of the Royal Institute of Navigation (UK) and the American 

Institute of Aeronautics and Astronautics. 

Abstract: Instabilities in Navigation - Balancing on the head of a pin 

The problem of navigation with dead reckoning is one of instability. Many of the usual methods that 

we learn from school and college are problematic as a result. We can augment dead reckoning using 

alternatives that provide direct measurements of position, but none are perfect. This talk outlines 

the main problems associated with dead reckoning navigation and the use of inertial sensors to 

measure the dynamics of a vehicle/platform. We discuss current sensor technologies and the 

possible use of quantum technology to augment classical inertial sensing, and we try to highlight the 

difficulties in using signal processing in unstable systems of equations. 
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Invited Speakers 

Dr Athanasios Gkelias and Prof Kin K. Leung, Imperial College London 

Dr Athanasios Gkelias, Imperial College London 

Athanasios (Thanos) Gkelias received his MEng in Electrical and 

Computer Engineering from the Aristotle University of 

Thessaloniki, Greece, and his MSc and PhD degrees from King's 

College London. Currently, he is a Research Fellow and project 

manager at Imperial. In the past, he served as the project 

manager of the University Defence Research Centre (UDRC) in 

Signal Processing at Imperial College, sponsored by the U.K. 

Dstl. He has been involved and made significant research 

contributions to several and diverse ICT projects funded by the 

EU, EPSRC, U.K. Dstl and U.S. Army. He has published more 

than 50 peer-reviewed journals, conference papers and book 

chapters. He was the co-recipient of the Best Student Paper 

Award in PIMRC 2012 and the IEEE Communications Society Best Survey Paper Award in 2022. 

Prof Kin Leung, Imperial College London 

Kin K. Leung received his Ph.D. degree from University of 

California, Los Angeles. He worked at AT&T Bell Labs in New 

Jersey from 1986 to 2004. Since 2004, he has been the Tanaka 

Chair Professor at Imperial College. He is also the Head of 

Communications and Signal Processing Group in the Electrical 

and Electronic Engineering Department. His research focuses 

on optimization and machine learning for large-scale 

communications, computer and sensor networks. He also 

works on multi-antenna and cross-layer designs for wireless 

networks.  

He is a Fellow of the Royal Academy of Engineering, IEEE 

Fellow, IET Fellow, and member of Academia Europaea. He 

received the Distinguished Member of Technical Staff Award 

at AT&T Bell Labs and the Royal Society Wolfson Research 

Merits Award. He co-received the IEEE Communications Society (ComSoc) Leonard G. Abraham Prize 

(2021), the IEEE ComSoc Best Survey Paper Award (2022), the U.S.–UK Science and Technology 

Stocktake Award (2021), the Lanchester Prize Honorable Mention Award (1997), and several best 

conference paper awards. He is an IEEE ComSoc Distinguished Lecturer (2022-23). He was a member 

(2009-11) and the chairman (2012-15) of the IEEE Fellow Evaluation Committee for the ComSoc. He 

has served as editor for 10 IEEE and ACM journals and chaired the Steering Committee for the IEEE 

Transactions on Mobile Computing. Currently, he is an editor for the ACM Computing Survey and 

International Journal of Sensor Networks. Website: www.commsp.ee.ic.ac.uk/~kkleung/   

x



Abstract: Machine Learning for Defence Signal Processing and Communications   

Machine learning (ML) has been successfully applied to a very wide range of defence signal 

processing and communications problems. A few key challenges deserve further attention. First, 

there often is a lack of sufficient signals/data to train the ML algorithms in use. Second, the huge of 

volume of signals/data are often collected by sensors at geographically distributed locations. Third, 

after proper training, the trained models may operate in an environment different from that where 

the training signals/data is collected. This talk will present exemplary techniques to address these 

challenges and briefly discuss open issues for future work.  

First, we consider a classification problem of electromagnetic (EM) signals to illustrate a technique to 

overcome lack of training data. Specifically, a system using Generative Adversarial Network (GAN) 

will be presented that can detect and classify EM signals as friendly or hostile, even when there is no 

prior data of the hostile signals. The proposed approach is validated by use of a simulated waveform 

dataset. Second, to support defence applications, federated learning can be used to learn the model 

parameters from signals/data collected at distributed nodes, without data sharing with any other 

node, and adapts according to the limited availability of resources. Using real datasets, the 

experimentation results show that the proposed approach performs near to the optimum with 

various ML models. Third, by using a network for defence analytic processing, we highlight the 

potential advantage of transfer learning for speeding up reinforcement learning when the operating 

environment has significant changes. 
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Dr Alex Serb, University of Edinburgh 

Dr. Serb is a reader in Unconventional AI Hardware Technologies at the University of Edinburgh. He 

is a MIET and SMIEEE. He has led a grant portfolio of  ~£2M worth of projects, including a DSTL 

contract for studying the feasibility of adiabatic capacitive neural 

networks and the UKRI New Investigator Award "ANAGRAM". He 

has further been a co-investigator in UKRI MINDS CDT. He has 

supervised 20+ PhD students and 6× postdocs. His research 

interests span across circuit and system design and AI, with 

particular focus on emerging technologies such as memimpedance 

elements. He has published 50+ journal articles and 50+ conference 

papers, and filed 5× patents. Furthermore, he is co-founder and 

CTO of ArC instruments ltd., a company that manufactures 

instrumentation for memimpedance device characterisation and testing (https://www.arc-

instruments.co.uk/). 

Abstract: Adiabatic computing for low power image sensing 

The world has an insatiable appetite for data, which leads to vast demand for data processing. 

Nowhere do the constraints of this model -especially power constraints- become more evident, than 

in the domain of image processing. We at the univ. of Edinburgh are engineering a hardware 

accelerator aimed at making neural network-based image processing more power efficient. Crucially, 

the accelerator uses “adiabatic techniques” -which will be explained in the talk- in order to reduce 

the power consumed by the neural network it embodies to below the CV2 limit typically associated 

with digital circuits, and which forms a hard limit for non-adiabatic systems. This is significant, as 

90%+ power dissipation savings can be made according to data gathered so far, allowing designs 

implemented in e.g. 180nm CMOS technology to be theoretically competitive with designs in 65nm 

CMOS (which also has strategic implications given the current state of semiconductor markets). In 

this talk we will cover the basic experiments and results carried out so far in this nascent field and 

discuss the perspectives for the future development of the technology. 
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Adaptive Kernel Kalman Filter for Magnetic
Anomaly Detection-based Metallic Target Tracking

Mengwei Sun, Richard Hodgskin-Brown, Mike E. Davies, Ian K. Proudler, James R. Hopgood

Abstract—This paper proposes the use of the adaptive kernel
Kalman filter (AKKF) to track metallic targets using magnetic
anomaly detection (MAD). The proposed AKKF-based approach
enables accurate tracking of moving metallic targets using mag-
netometer sensors, even in the presence of dynamic and unknown
magnetic moments. The experimental results demonstrate that
the proposed method exhibits favourable tracking and estimation
performance with reduced computational complexity compared
with the bootstrap particle filter (PF). For example, in magnetic
moment strength estimation, the relative root mean square
error (RRMSE) of the proposed algorithm using 50 particles
can approach 2.5% with a computation time of 0.18 seconds,
whereas the RRMSE of the PF using 2000 particles is 4.5% with
a computation time of 1.4 seconds. This study highlights the
potential of AKKF in MAD for metallic target tracking using
magnetometer sensors.

Index Terms—Adaptive kernel Kalman filter, magnetic
anomaly detection, metallic target tracking

I. Introduction

Detecting and tracking targets are critical in automated
surveillance and security systems that aim to keep up with
evolving safety and security risks. In recent years, magnetic
anomaly detection (MAD) has been widely studied for various
applications in military and civilian contexts [1], such as
airborne maritime surveillance [2], shipwrecks [3], access
control [4], and tracking of moving metallic vehicles [5],
[6]. The magnetic field is an intrinsic characteristic of many
objects. The ability to detect and track magnetic fields provides
a non-invasive and contactless method for monitoring and
analysing these objects. Tracking techniques based on MAD
typically utilise magnetic sensors, such as magnetometers [5],
[6], to detect and measure the magnetic field generated by
the objects. The position and orientation of the target can
then be estimated based on the measured magnetic field [2],
[5], [6]. Unlike other tracking technologies, such as optical

M. W. Sun, M. E. Davies and J. R. Hopgood are with the Institute of
Digital Communications, University of Edinburgh, Edinburgh, EH9 3FG, U.K.
E-mail: (msun; mike.davies; james.hopgood)@ed.ac.uk.

I. Proudler is with the Centre for Signal & Image Processing (CeSIP),
Department of Electronic & Electrical Engineering, University of Strathclyde,
Glasgow, G1 1XW, U.K. E-mail: ian.proudler@strath.ac.uk.

Richard Hodgskin-Brown is with the Electromagnetic Sensing Group,
Department of Electronics & Electrical Engineering, University of
Manchester, Manchester, M13 9PL, UK. E-mail: richard.hodgskin-
brown@postgrad.manchester.ac.uk

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1; and the MOD
University Defence Research Collaboration (UDRC) in Signal Processing;
EPSRC Impact Acceleration Accounts (IAA) Project number PV022.

For the purpose of open access, the author has applied a Creative Commons
Attribution (CC BY) licence to any Author Accepted Manuscript version
arising from this submission.

or ultrasonic methods, magnetic tracking is emerging as an
occlusion-free tracking scheme for estimating the position and
orientation of the target [7].

The tracking problem can be formulated under the Bayesian
framework by understanding the relationship between the mag-
netic moment of the target and its kinematic parameters. In [5],
[6], magnetometer sensor models for tracking metallic point
targets and extended targets are proposed and validated. The
suitability of magnetometer sensors for tracking is analysed
regarding local observability and the Cramér–Rao lower bound
(CRLB). The extended Kalman filter (EKF) and the weighted
least squares algorithm, by minimising the cost function, are
used for estimating the kinematic parameters and magnetic
moment, respectively. However, the time-varying magnetic
dipole moment, which arises due to the moving vehicle’s
heading, is ignored and set to be constant. In [2], the authors
investigate the use of various nonlinear filters for kinematic
and magnetic dipole tracking applications and compare their
performances. The nonlinear filters that are compared include
the EKF, unscented Kalman filter (UKF), generic particle filter
(GPF), auxiliary particle filter (APF), a combination of EKF
and GPF and a combination of UKF and GPF. Sithiravel et
al. [2] also include the derivation of the posterior CRLB to
quantify the possible best estimation accuracy for MAD.

The proposed sensor model in [2], [5], [6] results in a
sequential Bayesian estimation problem that is both highly
nonlinear and high-dimensional. Choosing a Bayesian filter in-
volves balancing between accuracy and computation complex-
ity. While the EKF is computationally efficient, its accuracy
may suffer when the system’s nonlinearity is high. In contrast,
the UKF and particle filter (PF) can provide better accuracy
for highly nonlinear problems. However, the computational
cost of the UKF can increase for high-dimensional systems,
while the PF can suffer from the curse of dimensionality.
Recently, the adaptive kernel Kalman filter (AKKF) has been
proposed [8]–[11], which demonstrates significant improve-
ment in estimation performance compared to other nonlinear
Kalman filters (KFs) while reducing computation complexity
and avoiding resampling, as is often required with most PFs
in tracking systems. This paper investigates the potential of
using the AKKF within MAD-based vehicle tracking with the
following contributions:
• Exploring a new application for the AKKF. While previous

work focused on utilising the AKKF for object tracking
problems, this paper uses the AKKF for joint tracking and
magnetic parameters estimation, which are high-dimensional
and high nonlinear problems.

979-8-3503-3732-7/23/$31.00 ©2023 IEEE 1



• The simulations evaluate the performance of the AKKF
in tracking and estimating magnetic parameters. The re-
sults demonstrate improved computation efficiency in vehicle
tracking and magnetic parameters estimation. For example,
compared with the PF, the relative root mean square er-
ror (RRMSE) of the magnetic moment strength estimation
achieved by the AKKF can be improved from 7% to 2%
when using 100 particles.

The paper is structured as follows: Section II describes the
system model, Section III presents the AKKF-based algorithm,
Section IV provides the simulation results, and Section V
draws the conclusions.

II. System model

The system for MAD-based vehicle tracking is shown in
Fig. 1, where two magnetometer sensors are positioned close
to a straight road with vector coordinates denoted as s1 and
s2, respectively. The vehicle is moving to pass the stationary
magnetometer sensors. The vehicle is approximated as a point
magnetic dipole. The dynamic state-space model (DSSM)
comprises a motion model that describes the target’s position
and velocity over time and a measurement model that relates
the target’s magnetic field to the measurements obtained by
the sensors. The target evolves as

xn = Fxn−1 + un =



1 ∆T 0 0 0
0 1 0 0 0
0 0 1 ∆T 0
0 0 0 1 0
0 0 0 0 1


xn−1 + un. (1)

Here, ∆T is the sampling interval and is set as ∆T = 1, un

is the process noise vector, the time index n is defined as
n = 1, . . . ,N, where N represents the number of time steps.
The hidden states are xn = [ξn, ξ̇n, ηn, η̇n, ζn]T, where (ξn, ηn, ζn)
represents the target dipole position in X-axis, Y-axis and Z-
axis, and (ξ̇n, η̇n) represent the corresponding velocity in X-
axis and Y-axis. We only consider the vehicle’s motion in the
X-Y 2D plane and ignore the velocity in the Z-axis, as the
vehicle is constrained to move on a flat surface and cannot
move up or down.

The measurement at the k-th magnetometer sensor is based
on a nonlinear model that can be described as follows [6]

yn,k = hk(xn,mn) + en,k

= B0 +
µ0

4π
3
(
rn,k ·mn

)
rn,k− ∥ rn,k ∥

2 mn

∥ rn,k ∥
5 + en,k.

(2)

Here, the constant B0 is the Earth’s magnetic field, rn,k =[
ξn, ηn, ζn

]T
− sk is the target position relative to the k-th

sensor at time n, and · denotes the dot product. The magnetic
dipole moment of the target is mn, and the additive white
Gaussian noise (AWGN) associated with the measurement is
en,k ∼ N (0,Rk). The magnetic field of the metallic objects, as
shown in Fig. 1, is induced partly due to the ferromagnetic
content (hard iron) and partly due to the deflection of the

Fig. 1: System setup: Two magnetometer sensors, the vehicle is moving to pass them.

Earth’s magnetic field (soft iron). Hence, the magnetic moment
of the metallic objects is modelled as [6]:

mn = mhard
n +msoft

n = Θ(θn)m0 +
D
µ0

B0, (3)

The rotation matrix Θ(θn) is used to model the effect of the
heading on the magnetic field refers to the magnetic north,
and it can be expressed as [6]:

Θ(θn) =


cos θn − sin θn 0
sin θn cos θn 0

0 0 1

 . (4)

The magnetic dipole moment of the target, denoted by m0, is
assumed to be independent of the external magnetic field. The
scalar constant D accounts for the magnetic field induced by
the target’s ferromagnetic content and deflection of the Earth’s
magnetic field. The permeability of the vacuum, represented
by µ0, is a fundamental physical constant that describes the
magnetic properties of free space.

III. AKKF-based tracking and estimation algorithms

The purpose of metallic target tracking is to precisely
track the target’s movement and simultaneously estimate its
magnetic moment. This is accomplished through the utilisa-
tion of a posterior probability density function (pdf), which
explains the joint distribution of the target’s hidden states
Xn =

[
xT

n ,mT
n ,m0,D

]T
, considering the observations y1:n,1:2 at

two sensors which are located at s1:2. The joint posterior pdf
is decomposed in Equation (5). In this section, we will discuss
how to use the PF and the AKKF to sequentially approximate
the joint posterior pdf.

A. PF-based algorithm

The PF approximates the joint posterior pdf by using a
weighted set of particles. Each particle represents a possi-
ble value of the joint state variables Xn at each time step
n = 1, 2, ...,N. The joint posterior distribution in (5) can be
estimated as follows:

p(Xn | y1:n,1:2)

≈
1
M

M∑
i=1

w{i}n δ(xn − x{i}n ,mn −m{i}n ,m0 −m{i}0,n,D − D{i}n ).
(6)
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p(Xn | y1:n,1:2) = p(xn,mn,m0,D | y1:n,1:2) = p
(
yn,1:2 | xn,mn,m0,D

)
×

%
p (xn|xn−1) p (mn|xn,mn−1,m0,D) p (m0,D) p

(
xn−1,mn−1,m0,D | y1:n−1,1:2

)
dxn−1dmn−1dm0dD

p
(
yn,1:2 | y1:n−1,1:2

) (5)

Here, w{i}n represents the weight of the i-th particle at time
step n, δ denotes the Dirac delta function, and M is the
number of particles. At each time step n, the weight w{i}n is
updated based on the likelihood of the observation y1:n,1:2
given the particle’s state variables {x{i}n ,m{i}n ,m{i}0 ,D

{i}}, i.e.,
w{i}n = w{i}n−1 p

(
y1:n,1:2 | x{i}n ,m{i}n ,m{i}0 ,D

{i}
)
. The state variables of

each particle are updated using the transition probabilities as
(7), where θ{i}n = arctan2(η̇{i}n , ξ̇

{i}
n ), and u{i}n represents a process

noise sample drawn from the process noise distribution.

x{i}n = Fx{i}n−1 + u{i}n (7a)

m{i}n = Θ(θ{i}n )m{i}0,n +
D{i}n

µ0
B0 (7b)

m{i}0,n = m{i}0,n−1 (7c)

D{i}n = D{i}n−1. (7d)

After updating the particles and their weights, the particles
are resampled to obtain a new set of particles for the next
time step. The resampling process involves randomly selecting
particles from the current set with probability proportional to
their weights, with replacement.

However, the computational cost of the PF grows exponen-
tially with the number of state variables, making it impractical
for high-dimensional problems. In high-dimensional problems,
it is difficult to obtain a sufficient number of particles to
represent the posterior pdf accurately, leading to particle de-
generacy, where only a small subset of particles have non-zero
weights, and the rest are effectively ignored. This can result in
poor estimation accuracy and instability in the estimates. To
address this issue, we investigate the use of the AKKF to solve
high-dimensional problems with low computational costs and
favourable accuracy.

B. AKKF-based algorithm

The proposed AKKF [8] enables us to obtain the empirical
kernel mean embedding (KME) of the posterior pdf of the
hidden state in (5). This is accomplished using a set of feature
mappings of generated particles and their corresponding kernel
weights. The particles are updated and propagated in the data
space based on the parametric DSSMs, and the corresponding
kernel weights are predicted and updated linearly. Common
kernel functions used for KMEs include linear, quadratic,
quartic, and Gaussian kernels. The quartic kernel can be used
when the data is highly nonlinear and complex. Considering
the system setup and the DSSM in equations (1) and (2), the
nonlinearity of the measurement model is highly nonlinear.
Therefore, we apply the quartic kernel to approximate the
predictive and posterior pdfs in this paper. The quartic kernel

Algorithm 1 AKKF-based metallic target tracking algorithm

Require: DSSM: motion model and measurement model.
1: Initialisation: Set the initial particles in the data space

x̃{i=1:M}
0 ∼ Pinit, w0 = 1/M [1, . . . , 1]T.

2: for n = 1 : N do
3: Prediction:

• In the data space, propagate proposal particles
following (7),

⇒ In the kernel feature space with basis Φn:
w−n = Γnw+n−1, S −n = ΓnS +n−1Γ

T
n + Vn.

4: Update:
• In the data space: y{i}n = h(X{i}n , e{i}n ),
⇒ In the kernel feature space with basis Φn:

w+n = w−n+Qn

(
G:,yn −Gyyw−n

)
, S +n = S −n−QnGyyS −n .

5: Proposal particles draw:
• In the data space:

X̃{i=1:M}
n ∼ N (E (Xn) ,Cov (Xn)),

⇒ Get the kernel feature space with basis Ψn.
6: end for

function k(X,Y) and its corresponding feature mapping ϕX(X)
are defined as:

k(X,Y) = (XTY + c)4 (8a)

ϕX(X) =
[
a1, . . . , a j, . . . , ad

]T
, (8b)

where c ≥ 0 is a free parameter that trades off the influence of
higher-order versus lower-order terms in the polynomial, and
the element in the quartic kernel feature mapping is

a j =

√
4!√

ϱ1! . . . ϱK!ϱK+1!
xϱ1

1 . . . x
ϱK
k

√
cϱK+1 , ϱ1 + · · · + ϱK+1 = 4.

Here, ϱ1, . . . , ϱK+1 are non-negative integers representing the
powers of the corresponding input dimensions. The dimension
of ϕX(X) is d = (K + 4)!/(4!K!), where K is the dimension of
the hidden state X = [x1, . . . , xk, . . . , xK]T.

The proposed AKKF-based algorithm is realised sequen-
tially by embedding the pdf p(Xn | y1:n,1:2) into an reproducing
kernel Hilbert space (RKHS) as an empirical KME,

p(Xn | y1:n,1:2)→ µ̂+Xn
= Φnw+n , (9)

where Φn represents the kernel feature mappings of par-
ticles and w+n is the updated kernel weight. The AKKF-
based algorithm consists of three main steps, which we will
further explain in the following subsections. The algorithm is
summarised in Algorithm I. See [8] for details of the AKKF.

1) Draw Proposal Particles at Time n − 1 : The posterior
distribution pdf at time n − 1, i.e., p(Xn−1 | y1:n−1,1:2) is

3



empirically as approximated by an element µ̂+Xn−1
in the RKHS

based on the AKKF, resulting in p(Xn−1 | y1:n−1,1:2)→ µ̂+Xn−1
=

Φn−1w+n−1. Here, Φn−1 =
[
ϕx(X{1}n−1), . . . , ϕx(X{M}n−1)

]
represents

the kernel feature mappings of the particles X{1:M}
n−1 using the

quartic kernel function, and w+n−1 is the weight vector with
a positive definite weight covariance matrix denoted as S +n−1.
Then, E(Xn−1) and Cov (Xn−1) from µ̂+Xn−1

are extracted and
passed to the data space following [8]. Next, proposal particles
are generated according to the importance of distribution as
X̃{i=1:M}

n−1 ∼ N (E (Xn−1) ,Cov (Xn−1)), and mapped to the RKHS
as Ψn−1 =

[
ϕx(X̃{1}n−1), . . . , ϕx(X̃{M}n−1)

]
.

2) Prediction from Time n − 1 to Time n: The empirical
KME of the predictive probability at time n is approximated
using a linear conditional operator in the RKHS:

p(Xn|y1:n−1,1:2) 7→ µ̂−Xn
= ĈXn |X̃n−1

µ̂+Xn−1

= Φn (Kx̃x̃ + λK̃ I)−1Kx̃x︸                ︷︷                ︸
Γn

w+n−1 = Φnw−n . (10)

Here, Φn =
[
ϕx(X{1}n ), . . . , ϕx(X{M}n )

]
represent the feature

mappings of the state particles at time n, which are obtained
by propagating X̃{i=1:M}

n−1 through the process function following
(7). The Gram matrices Kx̃x̃ = Ψ

T
n−1Ψn−1 and Kx̃x = Ψ

T
n−1Φn−1.

And Γn−1 represents the change of sample representation from
Φn−1 to Ψn−1. The regularisation parameter, λK̃ , ensures the
inverse is well-defined, and I is the identity operator matrix.
Following the derivation in [8], the kernel weight covariance
matrix, S −n , is calculated as S −n = ΓnS +n−1Γ

T
n + Vn, where Vn is

the finite matrix representation of the transition residual matrix
[8].

3) Update at Time n: The observation particles are up-
dated based on the observation models in (2). The kernel
mappings of observation particles in the kernel feature space
are Υn =

[
ϕy(y{1}n,1:2), . . . , ϕy(y{M}n,1:2)

]
. Based on the derivations in

[8], the KME vector, the weight vector, and the kernel weight
covariance matrix are updated as shown in Equations (11a) to
(11c), respectively.

µ̂+xn
= µ̂−xn

+ Qn

[
ϕy(yn) − Ĉyn |xn µ̂

−
xn

]
= Φnw+n , (11a)

w+n = w−n + Qn

(
G:,yn −Gyyw−n

)
(11b)

S +n = S −n − QnGyyS −n . (11c)

Here, Qn is the kernel Kalman gain, G:,yn = Υ
T
nϕy(yn), and the

Gram matrix of the observation at time n is Gyy = Υ
T
nΥn [8].

IV. Simulation Results

The simulation parameters are set as follows: the initial
state of the vehicle is set to x1 = [−7.56, 3.75, 6.75, 0.4]T,
and the hard iron dipole moment of the vehicle is m0 =

[−203, 124, 267]TAm2 [6]. The soft iron scalar is D = 1m3

[6]. The sensors’ axes are s1 = [0, 0, 0.3]T and s2 = [0, 9, 0.7]T,
and the measurement noise covariance matrices are [6]

R1 = 10−15


0.1303 −0.0073 −0.0114
−0.0073 0.1112 0.0117
−0.0114 0.0117 0.1558



(a)

(b)

Fig. 2: Measured magnetic field strength in X/Y/Z axes at two sensors. (a) Sensor 1;
(b) Sensor 2.

R2 = 10−15


0.1500 0.0205 0.0215
0.0205 0.1937 0.0310
0.0215 0.0310 0.1483

 .
Here, the unit of measurement is Telsa. The magnetic field
strength measured in X-axis, Y-axis, and Z-axis at two sensors
is shown in Fig. 2. The initial prior distribution of the
hidden states for particles is drawn following the settings
as ξ{i=1:M}

0 ∼ U(−7.6,−7.4), η{i=1:M}
0 ∼ U(6, 8), ξ̇{i=1:M}

0 ∼

N(ξ̇0, 10−2), η{i=1:M}
0 ∼ N(η0, 10−2), z{i=1:M}

0 ∼ N(z0, 10−1),
D{i=1:M}

0 ∼ N(D0, 10−2) , m{i=1:M}
0 ∼ N(m0, 103I).

Fig. 3 displays a representative trajectory and the tracking
performance obtained by the AKKF and the PF. Fig. 4 and
Fig. 5 display the estimation performance of the hard iron
dipole moment m0 and the soft iron scalar D, obtained from
these two filters. The AKKF uses MAKKF = 100 particles,
while MPF = 2000 particles are used for the PF. From Fig. 3
to Fig. 5, we can see that the AKKF with a smaller number of
particles achieved favourable tracking and estimation perfor-
mance compared to the PF with a large number of particles.
We then compare the average root mean square error (RMSE)
of the AKKF and the PF using the same number of particles,
along with its standard deviation for tracking performance.
RMSE is defined in (12). We obtain 100 Monte Carlo (MC)
realisations with an increasing number of particles, specifically
M = [50, 100, 200], while the bootstrap PF with 2000 particles
is considered as the benchmark performance, as shown in 6(a).

RMSE =

√∑N
n=1(ξn − ξ̂n)2 + (ηn − η̂n)2

N
. (12)

We also compared the RRMSE and its standard deviation
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Fig. 3: Ground truth trajectory versus tracking performance achieved by the AKKF and
the PF.

Fig. 4: True hard iron dipole moment m0 versus estimated values.

for the estimation performance of m0 and D, as well as
the computation time, as shown in Figures 6(b) to 6(d),
respectively.

Based on the simulation results, we draw the following
conclusions: the proposed AKKF demonstrates significantly
improved performance with the same number of particles
compared to the PF, especially for trajectory tracking and
magnetic moment strength estimation. For example, with 200
particles, the tracking accuracy can be improved by 0.13m,
and magnetic moment strength estimation accuracy can be
improved by 5%. Moreover, compared with the benchmark
performance achieved by the PF with 2000 particles, the
AKKF shows satisfactory tracking and estimation performance
with significantly reduced computational complexity when
dealing with high nonlinear and high-dimensional problems.
This improved performance and reduced computational com-
plexity are due to the ability of the AKKF to efficiently
represent high-dimensional data using kernels, which can
capture more information about the data in the rich feature
space of the kernel. The feature mappings can then be used
to perform computations more efficiently. In contrast, the PF
works with the data directly and may struggle to handle high-
dimensional data.

V. Conclusions
This paper explores a new application for the AKKF by

utilising it for joint tracking and magnetic parameters es-
timation in high-dimensional and high nonlinear problems.
The simulations presented demonstrate improved computa-
tional efficiency in vehicle tracking and magnetic parameter
estimation.

Fig. 5: True soft iron scalar D versus estimated values.

(a) (b)

(c) (d)

Fig. 6: Average and standard derivation of tracking RMSE. RMSE and computation
performance (a) Tracking; (b) Hard iron dipole moment estimation; (c) Soft iron scalar
estimation; (d) Computation time.
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Implementation of Adaptive Kernel Kalman Filter
in Stone Soup

James S. Wright, James R. Hopgood, Mike E. Davies, Ian K. Proudler, Mengwei Sun

Abstract—The recently proposed adaptive kernel Kalman filter
(AKKF) is an efficient method for highly nonlinear and high-
dimensional tracking or estimation problems. Compared to other
nonlinear Kalman filters (KFs), the AKKF has significantly
improved performance, reducing computational complexity and
avoiding resampling. It has been applied in various tracking
scenarios, such as multi-sensor fusion and multi-target tracking.
By using existing Stone Soup components, along with newly
established kernel-based prediction and update modules, we
demonstrate that the AKKF can work in the Stone Soup platform
by being applied to a bearing–only tracking (BOT) problem. We
hope that the AKKF will enable more applications for tracking
and estimation problems, and the development of a whole class
of derived algorithms in sensor fusion systems.

Index Terms—Adaptive kernel Kalman filter, Tracking, Stone
Soup

I. Introduction

Target tracking in sensor networks is a fundamental problem
that arises in a variety of applications, including surveillance,
environmental monitoring, and military operations. The ob-
jective of target tracking is to estimate the location, velocity,
and other relevant parameters of a target based on noisy and
incomplete measurements obtained from one or more sensors.
Nonlinear and non-Gaussian system models and measurement
noise pose challenges that have been addressed using Bayesian
filters, such as the extended Kalman filter (EKF) [1], unscented
Kalman filter (UKF) [2], and particle filter (PF) [3]. The
adaptive kernel Kalman filter (AKKF) has been proposed [4],
[5] and demonstrated to achieve better performance, reduced
computational complexity, and avoidance of resampling, espe-
cially in high nonlinear and high-dimensional problems. It has
been applied to various tracking scenarios, such as multi-target
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tracking [6], multi-sensor fusion [7], and magnetic anomaly
detection-based metallic target tracking [8].

Stone Soup [9], [10] is a software project that provides
a framework for developing and testing algorithms for the
target tracking and state estimation community. The project
prioritises flexibility over optimisation to aid in selecting com-
ponents and algorithms for real-world problems. Stone Soup
has a number of components used to both build algorithms
and enable an environment for testing and assessment. For
example, the Kalman filter (KF), EKF, UKF, and PF have
been implemented in the Stone Soup framework [11].

In this work, our goal is to demonstrate the efficacy of the
AKKF, by using the flexibility and metrics provided by Stone
Soup while showing how augmentation of the framework
can be undertaken. Specifically, we aim to realise adaptive
updates of the empirical kernel mean embeddings (KMEs) for
posterior probability density functions (pdfs) using the AKKF,
which is executed in the state space, measurement space, and
reproducing kernel Hilbert space (RKHS). In the state space,
we generate the proposal state particles and propagate them
through the motion model to get the state particles. In the
measurement space, the measurement particles are achieved
by propagating the state particles through the measurement
model. We map all these particles into RKHSs as feature map-
pings and linearly predict and update the corresponding kernel
weight mean vector and covariance matrix to approximate the
empirical KMEs of the posterior pdfs in the RKHS.

Our contributions include the first attempt to implement the
AKKF in Stone Soup, particularly in their simplest reference
forms. We designed the key new components required in
Stone Soup for the AKKF to run, including defining different
component types, such as the KernelParticleState,
Kernel, AdaptiveKernelKalmanPredictor and
AdaptiveKernelKalmanUpdater. Stone Soup is designed
for easy inheritance, which provides the design choice of the
Kernel class to enable the use of different kernels and will
permit the AKKF to be used for a wide variety of dynamic
and measurement models, as well as future extensions for
joint tracking and parameter estimation problems.

The paper is organised as follows: Section II describes
the AKKF’s general operation mathematically. Section III
provides additional analysis and explanation of the AKKF
implementation in Stone Soup. Section IV presents simulation
results for a bearing–only tracking (BOT) problem, highlight-
ing the improved performance of AKKF compared to the PF
with few particles. Lastly, Section V outlines future extensions
to our Stone Soup contribution.
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II. Adaptive kernel Kalman filter (AKKF)
The AKKF was inspired by the KME and KF and origi-

nally formulated in 2021 to address shortcomings of existing
Bayesian filters for tracking problems in nonlinear systems
[4], [5]. In the AKKF, the posterior pdf is approximated with
particles and weights, but not in the state space as in the
PF. Specifically, the pdf is embedded into an RKHS as an
empirical KME,

p(xk | y1:k)→ µ̂+xk
= Φkw+k , (1)

where xk represents the hidden state at the k-th time slot,
and yk is the corresponding observation. The feature map-
pings of particles x{1:MA}

k are represented as Φk, i.e., Φk =[
ϕx(x{1}k ), . . . , ϕx(x{MA}

k )
]
, where MA is the number of particles,

and the weight vector w+k includes MA non-uniform weights.
The KME µ̂+xk

in (1) is an element in the RKHS that captures
the feature value of the distribution.

A. How to choose different kernels in the AKKF

The feature mapping ϕx(x) of different kernels can be
chosen depending on the specific applications, such as linear
kernels, polynomial kernels, including quadratic and quartic
kernels, and Gaussian kernels. The following summarises
kernel functions with the assumption that x = [x1, . . . , xn]T

and x′ =
[
x′1, . . . , x

′
n

]T
.

• Linear kernel function

k(x, x′) = xTx′. (2)

The linear kernel can capture the first-order moments of a
distribution, such as the mean and variance. This kernel is
often used in linear regression. It can be effective when the
data is well-modelled by a linear relationship.

• Quadratic kernel function

k(x, x′) =
(
α⟨x, x′⟩ + c

)2 . (3)

Here, c ≥ 0 is a free parameter that trades off the influence
of higher-order versus lower-order terms in the polynomial.
The parameter α represents the slope that scales the input
vectors’ dot product. These parameters allow the kernel
to emphasise or de-emphasise the importance of different
input features. The quadratic kernel can capture the second-
order moments of a distribution, such as the covariance
and correlations between pairs of variables. The quadratic
kernel is appropriate when the data is nonlinear but relatively
simple.

• Quartic kernel function

k(x, x′) =
(
α⟨x, x′⟩ + c

)4 . (4)

The quartic kernel can capture higher-order moments beyond
the mean and covariance, such as skewness and kurtosis. The
quartic kernel can be used when the data is highly nonlinear
and complex.

• Gaussian kernel function

k(x, x′) = exp
(
−
∥x − x′∥2

2σ2

)
. (5)

Here, σ is a parameter that determines the width of the
Gaussian kernel. The Gaussian kernel can capture the mean
and covariance of the data, as well as the smoothness and
correlation structure. The Gaussian kernel is appropriate
when the data is highly nonlinear and complex, and the
relationship between the variables is not well-defined.

B. How to implement the AKKF

The AKKF includes three modules, as shown in Fig. 1:
a predictor that utilises both prior and proposal information,
at time k − 1, to update the prior state particles and predict
the kernel weight mean and covariance at time k, an updater
employs the predicted values to update the kernel weight
and covariance, and an updater generates the proposal state
particles.

1) Predictor takes prior and proposal: The predictor is
executed in the state space and kernel space, i.e., RKHS.
Suppose that the prior and proposal state particles at time
k − 1 are represented as x{i=1:MA}

k−1 and x̃{i=1:MA}

k−1 , respectively.
Their feature mappings in RKHSs are given by:

Φk−1 =
[
ϕx(x{1}k−1), . . . , ϕx(x{MA}

k−1 )
]

Ψk−1 =
[
ϕx(x̃{1}k−1), . . . , ϕx(x̃{MA}

k−1 )
]
.

■ At time k, the prior state particles in the state space are
generated by passing the proposal particles at time k − 1, i.e.,
x̃{i=1:MA}

k−1 , through the motion model as

x{i}k = f
(
x̃{i}k−1,u

{i}
k

)
, (6)

where i = 1 . . .MA, u{i}k represents process noise samples
which are drawn from the process noise distributions.
■ In RKHS, x{i=1:MA}

k are mapped to the RKHS as

Φk =
[
ϕx(x{1}k ), . . . , ϕx(x{MA}

k )
]
.

Based on [4], the transition matrix Γk, which represents the
change of sample representation, is calculated as

Γk =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃x, (7)

where the Gram matrices are Kx̃x̃ = Ψ
T
k−1Ψk−1 and Kx̃x =

ΨT
k−1Φk−1. The regularisation parameter λK̃ is used to stabilise

the inverse of Kx̃x̃, and I is the identity operator matrix. In
practice, Kx̃x̃ can become ill-conditioned and challenging to
invert, leading to numerical instability and poor performance.
To address this, the regularisation parameter λK̃ is added to
the diagonal of Kx̃x̃, which makes it better conditioned and
easier to invert. The value of this regularisation parameter
is usually chosen by cross-validation or other optimisation
methods. Then, the predictive kernel weight vector, denoted
as w−k , and covariance matrix, denoted as S −k , are calculated
as

w−k = Γkw+k−1, (8)

S −k = ΓkS +k−1Γ
T
k + Vk. (9)

Here, w+k−1 and S −k are the posterior kernel weight mean vector
and covariance matrix at time k − 1, respectively, and Vk
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Fig. 1: Flow diagram of the AKKF.

represents the finite matrix representation of the transition
residual matrix [4].

2) Updater uses prediction: The updater is executed in the
measurement space and RKHS.
■ In the measurement space, the measurement particles are

generated according to the measurement model as

y{i}k = h
(
x{i}k , v

{i}
k

)
(10)

where v{i}k represent measurement noise samples which are
drawn from the measurement noise distribution.
■ In RKHS, y{i=1:MA}

k are mapped in the RKHS as

Υk =
[
ϕy(y{1}k ), . . . , ϕy(y{MA}

k )
]
.

The posterior kernel weight vector and covariance matrix are
updated as

w+k = w−k + Qk

(
gyyk −Gyyw−k

)
(11)

S +k = S −k − QkGyyS −k (12)

Qk = S −k
(
GyyS −k + κI

)−1
. (13)

Here, Gyy = Υ
T
kΥk, gyyk = Υ

T
k ϕy(yk) is the kernel vector of

the measurement at time k, and κ is a regularisation parameter
to ensure the inverse is well-defined. The kernel Kalman gain
operator denoted as Qk is derived by minimising the trace
of the posterior covariance operator [4]. Then, the empirical
KME of p(xk |y1:k) is calculated as (1).

3) Proposal generated in updater: The proposal is executed
in the state space.
■ The AKKF replaces x{i=1:MA}

k by new weighted proposal
particles x̃{i=1:MA}

k to approximate the KME that can be exactly
propagated through the non-linearity. The proposal particles
are generated according to the importance distribution as

x̃{i=1:MA}

k ∼ N (E (Xk) ,Cov (Xk)) . (14)

In Stone Soup implementation, the state vector’s mean and
covariance for proposal are approximated using

E (Xk) = Xkw+k (15)

Cov (Xk) = XkS +k XT
k , (16)

where Xk = x{i=1:MA}

k . We draw proposal particles from a
Gaussian distribution for convenience, but other distributions
with similar statistics could also be used. These particles are
used to capture the key probability mass of the posterior pdf.
It is not equivalent to approximating the posterior pdf with a
Gaussian, but rather an adaptive change of basis within the
feature space through a simple linear mapping.

III. Implementation in Stone Soup

The main goal behind the development of the Stone Soup
framework is the ease of collaboration, consistent metrics
and open standards. This enables fast prototyping and user-
friendliness for researchers. To achieve this widespread adop-
tion, it is crucial that the components are modular and the
interfaces are consistent. Through this standardisation, users
can utilise algorithms and components without requiring a full
understanding the algorithms. Stone Soup follows an object-
oriented modular approach with AbstractClass forming the
base class with a DerivedClass inheriting its properties and
methods from the abstract class. This inheritance is important
to preserve the fundamental methods required of a class. For
example, all Predictor classes must have a predict() method
and all Updater classes must have an update() method.

The following subsections highlight the key new compo-
nents required in the Stone Soup framework for AKKF to
run. More details of the implementation and a tutorial can be
found in [12].

A. The KernelParticleState Types

The KernelParticleState inherits the functionality of
the ParticleState and adds the kernel covar property as
defined in (9) and (12).

B. The Kernel Types

The Kernel class provides a transformation from state space
into the RKHS represented in (8) by Kx̃x̃ and Kx̃x or a
transformation from measurement space into the KME space
represented in (11) by Gyy and gyyk . The kernel can be
represented as either a polynomial or a Gaussian kernel. The
polynomial kernels, QuadraticKernel and QuarticKernel
have the following properties:
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• c: is the parameter that trades off the influence of higher-
order versus lower-order terms in the polynomial. c in (3)
and (4),

• ialpha: is the inverse of α and is the slope parameter
that controls the influence of the dot product on the kernel
value. 1/α in (3) and (4).

The Gaussian kernel (GaussianKernel) has the following
property

• variance: The variance parameter of the Gaussian ker-
nel. σ2 in (5).

C. Predictor Types

As discussed previously, every Predictor class inherits
from the base class Predictor. All Predictors accept a prior
State, require a predict() method and return a StatePredic-
tion. Since the AKKF is a derivative of the Kalman filter the
base class to inherit from is the KalmanPredictor. This allows
the framework to distinguish the different class components.

The AdaptiveKernelKalmanPredictor is a
subclass of KalmanPredictor and inherits the
methods and properties of the KalmanPredictor. The
AdaptiveKernelKalmanPredictor includes the following
new properties;

• lambda predictor: λK̃ in (7), is a regularisation pa-
rameter to stabilise the inverse of the Gram matrix Kx̃x̃.
According to the simulation results presented in [4], the
tracking performance of the AKKF is relatively insensi-
tive to the values of λK̃ when it falls within the range of[
10−4, 10−2

]
[4].

• kernel: The Kernel class which is chosen to be used
to map the state space into the kernel space as described
in section III-B.

D. Updater Types

In a similar way to the KalmanPredictor class rep-
resented the inheritance for all Kalman predictor sub-
classes, the KalmanUpdater provides the same for up-
daters. All Updaters accept a prediction-measurement pair,
require an update() method and return a StateUpdate.
The AdaptiveKernelKalmanUpdater is a subclass of
KalmanUpdater and inherits the methods and properties of
the KalmanUpdater. The AdaptiveKernelKalmanUpdater
includes the following new properties;

• lambda updater: κ in (13) is a regularisation parameter
to ensure the inverse of GyyS −k is well-defined. The track-
ing performance of the AKKF is relatively insensitive to
κ when κ ∼

[
10−4, 10−2

]
[4].

• kernel: The Kernel class which is chosen to be used
to map the measurement space into the kernel space.

E. Implementation

Based on the above descriptions, Algorithm 1 summarises
the implementation of the AKKF in Stone Soup.

Algorithm 1 Adaptive kernel Kalman filter

1: Initialisation: Initial particles x{i=1:MA}

0 , Φ0, w0 =

1/MA [1, . . . , 1]T
MA×1, Ψ0 = Φ0. Kernel type and related

parameters.
2: for k = 1 : K do
3: The predictor
• Input: i.e., {x{i=1:MA}

k−1 , x̃{i=1:MA}

k−1 ,w+k−1, S
+
k−1}.

• Process: x{i}k = f
(
x̃{i}k−1,u

{i}
k

)
,

w−k = Γkw+k−1, S −k = ΓkS +k−1Γ
T
k + Vk.

• Output: {x{i=1:MA}

k ,w−k , S
−
k }.

4: The updater
• Input: {x{i=1:MA}

k ,w−k , S
−
k }.

• Process: y{i}k = h
(
x{i}k , v

{i}
k

)
,

w+k = w−k + Qk

(
gyyk −Gyyw−k

)
, S +k = S −k − QkGyyS −k .

• Output: {x{i=1:MA}

k ,w+k , S
+
k }.

5: The proposal generator
• Input: {x{i=1:MA}

k ,w+k , S
+
k }.

• Process: x̃{i=1:MA}

k ∼ N (E (Xk) ,Cov (Xk)).
• Output: {x{i=1:MA}

k , x̃{i=1:MA}

k ,w+k , S
+
k }.

6: end for

IV. Demonstration

In this section, we report the tracking performance of
different filters in the Stone Soup platform. The corresponding
dynamic state-space model (DSSM) is described as

xk =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T

0 0 0 1

 xk−1 +


0.5 0
1 0
0 0.5
0 1

 uk, (17)

yk = tan−1
(
ηk − ηs

ξk − ξs

)
+ vk. (18)

Here, ∆T represents the sampling period, k represents the
time index and k = 1, . . . ,K. The hidden states are xk =

[ξk, ξ̇k, ηn, η̇k]T , where (ξn, ηk) and (ξ̇k, η̇k) represent the target
position and the corresponding velocity in X-axis and Y-axis,
yk is the corresponding observation. The sensor is located at[
ηs = 0, ξs = 0

]
. The process noise uk follows Gaussian distri-

bution uk ∼ N(0, σ2
uI) and σu = 0.01. Following [14], the prior

distribution for the initial state is specified as x0 ∼ N(u0, P0)
with u0 = [−0.5, 0.001, 0.7,−0.05]T and,

P0 =


0.1 0 0 0
0 0.005 0 0
0 0 0.1 1
0 0 0 0.01

 .
Fig. 2 and Fig. 3 displays two representative trajectories and
the tracking performance obtained by three filters: the AKKF
uses a quartic kernel with 100 particles, the PF with 100
particles, and benchmark performance achieved by the PF with
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Fig. 2: BOT tracking of a moving target in two dimensions of Trajectory-1 (a) and
Trajectory-2 (b) using the quartic kernel-based AKKF with 100 particles; the PF with
100 particles; and the benchmark performance of the PF with 2000 particles. The physical
unit on the X-axis and Y-axis is the ‘metre’.

Fig. 3: Performance of BOT tracking of a moving target in two dimensions of Trajectory-
1 (a) and Trajectory-2 (b) using the OSPA [13] distance.

2000 particles. Trajectory-1 (Fig 3a) shows that the AKKF
performs better than both the PF and the benchmark, while
Trajectory-2 (Fig 3b) shows that the AKKF performs alongside
the benchmark and outperforms the PF. From the results, we

arrive at the following conclusions. The implementation of the
AKKFs in Stone Soup works properly for the BOT problems,
it shows improvement and robustness compared to the PF with
the same number of particles.

V. Conclusions

This paper provides the complete implementation of the
AKKF in the Stone Soup framework. We utilised and extended
existing components to incorporate the AKKF. The new algo-
rithm combines the PF’s non-linearity with the KF’s analytical
properties via KMEs. This shows the compatibility of newer
algorithms within the Stone Soup framework and establishes
a workflow to support other algorithms being implemented
in Stone Soup. The authors are interested in extending the
AKKF further [6]–[8] by offering additional tutorials and
demonstrations in the Stone Soup documentation [11].
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Abstract—Detecting objects such as drones is a challenging
task as their relative size and maneuvering capabilities can
deceive machine learning models and cause them to misclassify
drones as birds or other objects. In this work, we investigate
applying several deep-learning techniques to benchmark real
data sets of flying drones. A Deep learning paradigm is proposed
for the purpose of mitigating the complexity of those systems. The
proposed paradigm consists of a hybrid between the AdderNet
deep learning paradigm and the SSD paradigm. The goal was
to minimize multiplication operations numbers in the filtering
layers within the proposed system and, hence, reduce complexity.
Some standard machine learning techniques such as SVM is
also tested and compared to other deep learning systems. The
data sets used for training and testing were either complete or
filtered in order to remove the images with mall objects. The
types of data were either RGB or IR data. Comparisons were
made between all these types and conclusions are presented.

Index Terms—Drones Detection, Deep Learning, Birds versus
Drones, Precision of Detection, AdderNet

I. INTRODUCTION

Drones and birds are similar in their flight altitude, velocity,
and maneuverability [1]. Several machine learning models
including Single Shot Detector (SSD), You Only Look Once
(YOLO), Faster-RCNN, and Detection Transformer (DETR)
have been applied in the literature to tackle the problem of
real-time drone detection [2]. However, all those techniques
rely heavily on Convolutional Neural Networks (CNN) which
are computationally expensive. Furthermore, to the best of
our knowledge, the data sets tested in the literature have only
a single class (Drones). This study aims to investigate the
use of deep learning/machine learning techniques for the task
of airborne object detection. The objectives of this study in-
clude examining traditional machine learning techniques such
as SVM to highlight the trade-offs between computational

*This research is supported by the Thales Chair of Excellence Project,
Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi,
UAE.

complexity and accuracy for real-time drone detection. The
convolutional filters in SSD were replaced with AdderNet
filters proposed in [3] to examine the pros and cons of the
modified SSD. All of the methods were compared with the
replicated results of the performance benchmark in [2].

II. BACKGROUND

Object detection has gone through two milestones during
the previous two decades, traditional object detection and
deep learning object detection [4]. Traditional object detection
techniques mainly depended on handcrafted features due to the
lack of image representation techniques in the early days of
object detection [4]. A very common and effective traditional
object detector proposed by the authors of [5] is the Viola-
Jones Detector. This detector uses a sliding window that
passes through the whole image with different scales to detect
the existence of the desired object [5]. The authors of [6]
proposed a Histogram of Oriented Gradients (HOG) as a
feature descriptor that can be used with traditional object
detection techniques. The most attractive attribute of HOG
feature descriptor is its ability to detect objects of different
sizes [4]. On the other hand, Counter Unmanned Air Systems
(C-UAS) solutions typically use multiple sensors such as
radar, electro-optical, acoustic and RF, to reveal potential
threats posed by small Unmanned Air Systems (sUASs) or
drones to manned aviation, sensitive infrastructure, or military
assets, etc. As an example of that is the Thales C-UAS system
employs the Thales/Aveillant Gamekeeper staring radar and a
camera (SYT 4k) to deliver reliable situational awareness at
long ranges (up to 7.5 km).

III. DATA SETS USED

The data sets used in the experiments presented in this paper
are Drone-Vs-Bird [7] and Anti-UAV [8].
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A. Drone-Vs-Bird Data Set

The data set has been downloaded by contacting wos-
detc@googlegroups.com whom granted access to 77 videos.
The videos have been converted into RGB images and COCO
annotations were created by utilizing the tools available in [2].

One of the drawbacks of this data set is the size of the
drones within the image. Moreover, the low quality of the
images can cause a significant disadvantage when training
a classifier. Furthermore, the drones in some images appear
similar to the patterns in the bush of the tree behind it,
hence, the classifier may end up learning the wrong patterns.
Moreover, the images are created by converting the videos
into a sequence of images, therefore, many of the images
created from these data sets are replicates. Finally, the data
set contains only one class which is drones. The description
of the images obtained from the videos in the Drone-Vs-Bird
data set is provided in table I. Nevertheless, this data set is a
benchmark data set that is used by many researchers and we
are going to partially rely on it n this work.

TABLE I: Number of Samples in Drone-Vs-Bird

Object Size Training Samples Validation Samples
Small 63295 3578
Medium 21124 1104
Large 2413 63
Background 13034 444
Total 99866 5189

B. Anti-UAV Data Set

The data set can be downloaded directly from [8]. The
total number of infrared videos in this data set is 140 and
by utilizing the tools in [2], the data set can be converted into
infrared images with COCO annotations.

The size of the drones presented in Anti-UAV data set is
better than Drone-Vs-Bird, however, the data set still contains
small and unclear drone images. Similar to Drone-Vs-Bird, the
images are sequences generated from videos, therefore, many
repeated images can be found in this data set. Finally, the
data set contains one class which is drones. The description
of the images obtained from the videos in Anti-UAV data set
is provided in table II.

TABLE II: Number of Samples in Anti-UAV

Object Size Training Samples Validation Samples
Small 58362 2373
Medium 38660 2670
Large 94 0
Background 1560 197
Total 98676 5240

The following section presents our proposed deep learning
method that combines AdderNet with SSD in an attempt to re-
duce the complexity, followed by comparisons of experiments
and results with the most common object detection models
(SSD, YOLO, DETR, Faster-RCNN) tested with Drone-Vs-
Bird data set and Anti-UAV data set. The AdderNet uses no
multiplications in the convolution layers, hence the complexity
in this type of deep learning paradigm is expected to be much

less. The SSD is one of the most successful one-stage deep
learning paradigms, therefore, it was selected for hybridization
with the AdderNet.

IV. DETECTION BASED ON DRONES SIZE

The size of an object is a factor that affects the performance
of an object detector [9]. According to the authors of [9],
the performance of an object detector can be significantly de-
graded if the resolution of the picture containing small objects
is relatively low. Furthermore, images with extremely high
resolution can add high computational costs [9]. The main
problem with the Drone-Vs-Bird data set is the low resolution
of small-sized objects. Hence, the choice of size and resolution
presents a trade-off between performance and complexity. For
the purpose of practical applications, complexity must not be
increased dramatically as this means increasing the inference
time. Henceforth, no matter how accurate the object detector
is, it will not be greatly useful.

To determine the optimal object size for object detection
without changing the resolution, three thresholds proposed by
the authors of COCO data set [10] were used as described
below:

1) Small = size < 32x32
2) Medium = 32x32 < size < 96x96
3) Large = size > 96x96
The reason behind doing this experiment is to determine the

minimum object size to use in order to have meaningful results
at reasonable complexity. This is important as it is desired to
create a data set that contains both birds and drones in the
future (not available in any of the current data sets). Hence,
if the size of the object is too small, the model will not learn
any useful information due to the similarities between drones
and birds. The Drone-Vs-Bird data set (RGB) was filtered
to eliminate small images (area < 32x32). SSD and Faster-
RCNN were experimented with using the full data set and the
filtered data set to observe the enhancements in mAP results.

TABLE III: Object Size Results SSD

Average Precision Full Dataset Filtered Dataset
IoU=0.50:0.95, area = all 0.270 0.525
IoU=0.50, area = all 0.620 0.960
IoU=0.75 , area = all 0.172 0.490
IoU=0.50:0.95, area = small 0.164 -
IoU=0.50:0.95, area = medium 0.521 0.520
IoU=0.50:0.95, area = large 0.646 0.665

TABLE IV: Object Size Results Faster-RCNN

Average Precision Full Dataset Filtered Dataset
IoU=0.50:0.95 area= all 0.476 0.678
IoU=0.50, area = all 0.734 0.979
IoU=0.75, area = all 0.507 0.815
IoU=0.50:0.95, area = small 0.360 -
IoU=0.50:0.95, area = medium 0.792 0.676
IoU=0.50:0.95, area = large 0.765 0.725

As shown in tables III and IV, there is a significant improve-
ment in mAP results between filtered and full data sets. Hence,
this proves that selecting objects with reasonable size can
significantly enhance the learning process of object detection
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models. Moreover, table III suggests that SSD performance
on small RGB objects is relatively low compared to the other
methods which is also the conclusion of the authors in [11].

V. HYBRID SSD AND ADDERNET

According to [12] at least 75% of the papers published
in popular related conferences target the accuracy of deep
neural networks. Insufficient contributions targeting compu-
tational complexity were found in the literature. Moreover,
improvement in neural network accuracy is a result of in-
creasing the training examples dramatically, hence, accuracy
is proportional to the computation complexity. Furthermore,
the authors in [13] argue that performance must be judged in
terms of both accuracy and computational complexity. This
experiment aims to investigate an algorithm to reduce the
complexity of deep neural networks. The main focus will be
investigating the AdderNet algorithm proposed in [3] and the
possibility of extending their findings to object detection.

For the purpose of decreasing the computational complexity
(number of multiplications present in the convolution layers),
the AdderNet filters proposed in [3] were used to replace the
normal convolution filters in the architecture of SSD. Normal
convolution filters rely mainly on multiplications, whereas
AdderNet filters use addition only [3]. The aim of the hybrid
model (SSD + AdderNet) is to decrease the inference time
for real-time applications since addition is computationally
cheaper than multiplication. The conventional structure of an
SSD model as proposed in [14] is shown in Fig. 1. The SSD
was chosen since it is a one-stage detector. It was chosen over
YOLO-v3 , which is also a one-stage detector because it has
higher mAP results compared to YOLO-v3 as suggested in
other studies [15] [16].

Fig. 1: SSD Model [14]

Initially, it was desired to remove all of the convolution lay-
ers present in all parts (backbone and SSD layers), however,
this caused the hybrid model to become very unstable (loss
reaching infinity while training). Therefore, the replacement
was limited to include the VGG 16 layers only. The VGG 16
model introduced in [17] is shown in more detail in Fig. 2.

The blue-labeled layers in Fig. 2 were replaced with Adder-
Net filters. Unfortunately, the model was still unstable, and
the loss reached infinity in the training phase. The AdderNet
filters proved to be very sensitive to the change in weight at

each iteration, therefore, to make the model stable during the
training phase, the learning rate was initiated from 2e-4 and
decayed to 2e-6 using SGD optimizer with a momentum of
0.9. As a result of this constraint, the training of the model
was possible.

Fig. 2: SSD Backbone [17]

The number of filters, stride, padding, and multiplication
of each of the convolutional layer per one RGB image is
provided in table V. By implementing the proposed SSD +
AdderNet, the number of multiplications has been reduced by
367.7785 M. Please, see table V again that depicts the number
of multiplications eliminated.

TABLE V: Number of Multiplications
Conv 1 Conv 2 Conv 3

Block 1

Number of filters : 64
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 224x224x3
Multiplications = 86.704 M

Number of filters : 64
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 224x224x3
Multiplications = 86.704 M

-

Block 2

Number of filters : 128
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 112x112x3
Multiplications = 44.35 M

Number of filters : 128
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 112x112x3
Multiplications = 44.35 M

-

Block 3

Number of filters: 256
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 56x56x3
Multiplications = 21.676 M

Number of filters: 256
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 56x56x3
Multiplications = 21.676 M

Number of filters: 256
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 56x56x3
Multiplications = 21.676 M

Block 4

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 28x28x3
Multiplications = 10.838 M

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 28x28x3
Multiplications = 10.838 M

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 28x28x3
Multiplications = 10.838 M

Block 5

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 14x14x3
Multiplications = 2.7095 M

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 14x14x3
Multiplications = 2.7095 M

Number of filters : 512
Size of filter : 3x3
Padding : same
Stride : 1
Input size : 14x14x3
Multiplications = 2.7095 M

The training was done for 24 epochs on both the Drone-
Vs-Bird (RGB) and the Anti-UAV (IR). The following figure
(Fig. 3) shows the training loss of the hybrid SSD model.
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Fig. 3: Hybrid SSD Detection Learning Loss

For both the RGB and IR image groups. The IR group
shows fewer values in all types of losses (localization and
classification). The testing was done using the trained weights
at different epochs. The following tables (VI, VII, and VIII)
show the obtained testing mAP (using COCO evaluator) at
epoch 3, epoch 12, and epoch 24 for Drone-Vs-Bird (RGB)
and Anti-UAV (IR).

TABLE VI: Epoch 3

Average Precision Results (RGB) Results (IR)
IoU=0.50:0.95, area = all 0.165 0.538
IoU=0.50, area = all 0.458 0.838
IoU=0.75 , area = all 0.064 0.617
IoU=0.50:0.95, area = small 0.085 0.372
IoU=0.50:0.95, area = medium 0.418 0.671
IoU=0.50:0.95, area = large 0.474 -

TABLE VII: Epoch 12

Average Precision Results (RGB) Results (IR)
IoU=0.50:0.95, area = all 0.187 0.539
IoU=0.50, area = all 0.508 0.839
IoU=0.75 , area = all 0.087 0.620
IoU=0.50:0.95, area = small 0.099 0.376
IoU=0.50:0.95, area = medium 0.448 0.673
IoU=0.50:0.95, area = large 0.503 -

TABLE VIII: Epoch 24

Average Precision Results (RGB) Results (IR)
IoU=0.50:0.95, area = all 0.200 0.541
IoU=0.50, area = all 0.533 0.839
IoU=0.75 , area = all 0.105 0.626
IoU=0.50:0.95, area = small 0.104 0.377
IoU=0.50:0.95, area = medium 0.473 0.673
IoU=0.50:0.95, area = large 0.495 -

Fig. 4: Comparison of Results RGB

Fig. 5: Comparison of Results IR

The comparison of results as shown in Fig. 4 represent
the mAP for the main metric (IoU = 0.50:0.95, area = all).
Note that IoU means intersection over the union between
the ground truth bounding boxes and predicted bounding
boxes. The mAP results (main metric) of the hybrid SSD
were compared with the mAP (main metric) of common
object detectors (SSD, YOLO-v3, DETR, Faster-RCNN). The
training for the common object detectors was done for 24
epochs as well for both RGB an IR images. Additionally, an
object detector using SVM and HOG descriptor was trained
and tested on RGB images only for the purpose of comparison
as well. As shown in Fig. 13, the SSD-AdderNet scored an
mAP of 0.20, while the SSD scored an mAP of 0.27. The
decrease in testing results is associated with a decrease in
computational complexity. Furthermore, the proposed hybrid
SSD model scored higher than SVM with HOG when tested
on RGB images.

Interestingly, on the IR images, the hybrid SSD model
outperformed the other models with an mAP (main metric) of
0.541 as shown in Fig. 5. The performance of the proposed
hybrid SSD was much better when tested on IR images as
suggested in table VI. However, it can be also seen that there
is a slow increase in the testing results as the training epochs
increase. This is a consequence of the small learning rate
used, however, increasing the learning rate was not possible
as it makes the model unstable. Along with the enhanced
results when tested on IR images, the hybrid SSD model as
shown earlier has 367.7785 M less multiplications. Some of
the images detected by the hybrid SSD-AdderNet are shown
in Fig. 6(a and b).

(a) Sample Result 1: RGB

(b) Sample Result 2: IR

Fig. 6: Sample Results

All of the experimented object detection methods showed
effectiveness in detecting drones, however, it is important to
note that the quality of an image (resolution and the size of
objects presented in it) are factors that affect the performance
and complexity of the model.
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VI. CONCLUSIONS

This paper summarizes efforts to improvise a new deep
learning paradigm of one stage detector with much less
complexity in the filtering layers. The reduced complexity
is based on minimizing the number of multiplications in
the convolutional layer in an SSD-AdderNet architecture.
The training/testing data was extracted from real videos
with moderate resolution and mixture of small/medium/large
objects (drones) sizes. The goal was to detect the pres-
ence of a drone in the image. Despite the low precision
achieved by our proposed SSD-AdderNet when trained/tested
on RGB images compared to other well-known techniques,
the reduction in the complexity was remarkable. However,
the performance of the SSD-AdderNet outperformed other
models when trained/tested on IR images. The proposed
method is recommended to be used for large-to-medium-sized
objects when dealing with RGB images where the results
are acceptable. Furthermore, the SSD-AdderNet showed good
performance when dealing with small images on IR data
which is considered to be very promising. The users now
have the privilege to switch between high precision detectors
such as the DETR or FasterR-CNN for small RGB objects
or our less complex and, hence, faster during inference, SSD-
AdderNet for larger and higher resolution RGB objects that
usually require more computations and time. Future work will
focus more on increasing the precision of our proposed system
for RGB objects, investigating other types of hybridization for
different types of images, and creating a data set that combines
the two classes (birds and drones).
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I. González, J.-P. Mercier, et al., Drone vs. bird detec-
tion: Deep learning algorithms and results from a grand
challenge, Sensors 21 (2021) 2824.

[8] N. Jiang, K. Wang, X. Peng, X. Yu, Q. Wang, J. Xing,
G. Li, J. Zhao, G. Guo, Z. Han, Anti-uav: A large
multi-modal benchmark for uav tracking, arXiv preprint
arXiv:2101.08466 (2021).

[9] Z. Liu, G. Gao, L. Sun, Z. Fang, Hrdnet: high-resolution
detection network for small objects, in: 2021 IEEE Inter-
national Conference on Multimedia and Expo (ICME),
IEEE, 2021, pp. 1–6.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, C. L. Zitnick, Microsoft coco:
Common objects in context, in: European conference on
computer vision, Springer, 2014, pp. 740–755.

[11] J. Park, D. H. Kim, Y. S. Shin, S.-h. Lee, A comparison
of convolutional object detectors for real-time drone
tracking using a ptz camera, in: 2017 17th International
Conference on Control, Automation and Systems (IC-
CAS), IEEE, 2017, pp. 696–699.

[12] R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni, Green
ai, Communications of the ACM 63 (2020) 54–63.

[13] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-
net: Imagenet classification using binary convolutional
neural networks, in: European conference on computer
vision, Springer, 2016, pp. 525–542.

[14] L. Wei, W. Cui, Z. Hu, H. Sun, S. Hou, A single-
shot multi-level feature reused neural network for object
detection, The Visual Computer 37 (2021) 133–142.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, A. C. Berg, Ssd: Single shot multibox detector,
in: European conference on computer vision, Springer,
2016, pp. 21–37.

[16] L. Tan, T. Huangfu, L. Wu, W. Chen, Comparison of
retinanet, ssd, and yolo v3 for real-time pill identifica-
tion, BMC Medical Informatics and Decision Making
21 (2021) 1–11.

[17] K. Simonyan, A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv
preprint arXiv:1409.1556 (2014).

15



Kalman Filter-Based Suspicious Object Tracking
for Border Security and Surveillance Systems

using Fixed Automotive Radar
Ji-il Park

Defense Reform Office
The Ministry of National Defense

Seoul, Republic of Korea
tinz64@kaist.ac.kr

SeungHyeon Jo
Automotive Business

DXC Luxoft
Seoul, Republic of Korea

coolwind@kaist.ac.kr

Hyung-Tae Seo
Department of Mechanical Engineering

Kyonggi University
Suwon, Republic of Korea

htseo@kyonggi.ac.kr

Keun Ha Choi
Daedong-KAIST Research Center

for Mobility, KAIST
Daejeon, Republic of Korea

choiha99@kaist.ac.kr

Jihyuk Park*
Department of Automotive Engineering

Yeungnam University
Gyeongsan, Republic of Korea

jihpark@yu.ac.kr

Kyung-Soo Kim*
Department of Mechanical Engineering

KAIST
Daejeon, Republic of Korea

kyungsookim@kaist.ac.kr

Abstract—With recent active research related to autonomous
driving, object tracking technology using autonomous driving
sensors such as LiDAR and radar has also undergone extensive
development. Accordingly, attempts are being made to apply
autonomous sensors not only on autonomous vehicles but also in
various fields such as security and surveillance. However, since
security and surveillance systems should be able to detect and
track objects even under extreme environmental conditions such
as snow, rain, and fog during the day or night, radar systems that
meet the relevant requirements are essential. In South Korea, the
distance of the Military Demarcation Line (MDL) is 250 km, and
a considerable investment would be required to install more than
1,000 radars and PCs with built-in GPUs in all sections for a
border security and surveillance system. Therefore, in this study,
a Kalman filter-based object tracking system is explored rather
than applying deep learning, which requires GPU processing.
Additionally, most objects along the MDL are highly likely to be
suspicious objects, so a radar sensor is most suitable because it
provides coordinates, distance, and speed of movement without
needlessly determining whether an object is an enemy or not.
For accurate object detection and tracking performance, two
motion models for the Kalman filter, a constant acceleration
model (CAM) and a constant turn rate and acceleration model
(CTRAM), are compared to identify a suitable model for each
object movement state.

Index Terms—Radar tracking, Kalman filter, Security and
surveillance, Scientific security system, Defense innovation

I. INTRODUCTION

Radar systems provide essential sensing capabilities for
autonomous driving research because they are minimally in-
fluenced by environmental noise, such as snow, rain and fog,

This research was a part of the project titled ’Development of Smart Port
Autonomous Ships Linkage Technology’, funded by the Ministry of Oceans
and Fisheries, Korea.

* Corresponding author e-mail: jihpark@yu.ac.kr, kyung-
sookim@kaist.ac.kr

compared to cameras and LiDAR. Another advantage is that
the velocity and position of an object can be accurately mea-
sured based on the Doppler effect. For these reasons, radar is
used not only in vehicles but also in various other applications,
such as aviation and ground surveillance, particularly in the
defense field.

In particular, recent attempts have been made to apply auto-
motive radar technology in security and surveillance systems.
This is possible due to the recent development of object
detection and tracking technology in autonomous driving
research, enabling the use of autonomous driving sensors in
border security and surveillance systems. The long-range radar
systems used in vehicles have a detection distance of 250 m,
which is similar to the effective range of rifles; therefore, they
are suitable for surveillance purposes in the defense field, and
despite the narrow field of view (FOV) of radar, the advantage
of being able to monitor a wide area through rapid rotation is
important.

Some previous studies have used radar detection data to
track objects. Here, object tracking technology refers to an
algorithm that uses estimated dynamics to predict the new
position of an object in the next frame and update it based on
measurements. Research on object tracking using only radar
sensors has been mainly conducted in the field of aviation. A
study on the application of the EKF and UKF in radar systems
for tracking target aircraft was conducted by U.K. Singh et al.
[1]. However, in that study, the tracking performance of the
EKF and UKF was compared only through simulations. In
addition, various other studies have been conducted to improve
the tracking performance of radar systems for detecting aircraft
[2] [3] [4] [5].

Systems for detecting and tracking objects for surveillance
purposes have been mainly developed based on cameras.
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Fig. 1: ROS-based object tracking system configuration

Fig. 2: Acquisition of object tracking data from an experimental environment similar to the real Freedom House area

Object tracking using a camera is a process in which a
surveillance system finds an object in every frame of a video
and tracks that object over time. The most representative
method of camera-based object tracking is the optical flow
approach. Sepehr Aslani et al. detected and tracked moving
objects through the intensity changes in each video frame [6].
Various other studies have also used cameras to track objects
for security and surveillance purposes [7] [8] [9] [10], but
it is still difficult to apply this approach at some important
security facilities due to the characteristics of cameras, whose
performance is not robust against environmental changes [11].

Therefore, this study focuses on improving object tracking
performance based on a radar sensor, which is robust to
environmental changes and can detect objects over long dis-
tances. A comparison of Kalman filter-based object detection
systems using two motion models (CAM and CTRAM) is
presented. These are the most suitable models for a security
and surveillance system to be applied in the border area of
the Republic of Korea because they best correspond to the
characteristics of the objects that are most likely to be detected
in this area.

II. EXPERIMENTAL SETUP

A. Environment configuration

The radar tracking code was written in C++ and configured
in a Robot Operating System (ROS) environment. As shown
in Fig. 1, the raw data sensed by the radar were transmitted
to the radar tracking node through ROS CAN communication,
and then the tracking node generated object information from
this raw data and published it as an ROS topic. The published
topic messages included the position, velocity, length, and
width information of the detected objects. Data collection was
performed using a Continental ARS 408-21, which is a 77

Fig. 3: System structure for a performance comparison of
CAM and CTRAM
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Fig. 4: Comparison of tracking performance with CAM and CTRAM (position and velocity)

GHz long-range radar system capable of sensing over distances
of up to 250 m. Additionally, we used an Nvidia Jetson Xavier
to obtain data.

p(x) = p(x)+
1

yawd2 {(v · yawd+a · yawd ·dt) · sin(yaw+ yawd ·dt)

+a · cos(yaw+ yawd ·dt)− v · yawd · sin(yaw)−a · cos(yaw)}

p(y) = p(y)+
1

yawd2 {(−v · yawd−a · yawd ·dt) · cos(yaw+ yawd ·dt)

+a · sin(yaw+ yawd ·dt)+ v · yawd · sin(yaw)−a · sin(yaw)}
yaw = yaw+ yawd ·dt

v = v+a ·dt

yawd = yawd

a = a
(1)

As shown in Fig. 2, the radar system was installed on a 15-
meter-high barrier to acquire a representative test dataset for
security and surveillance systems. Then, data were acquired

for multiple vehicles on the road 45 m away from the
installation point. The difference from previous studies is that
the radar sensor in this study was installed at a height of 15
m rather than on the ground, and accordingly, objects were
sensed diagonally instead of from the front or side.

B. Data acquisition

As shown in Fig. 2, the experimental site was constructed
to be as similar as possible to the Freedom House area,
where a North Korean soldier escaped in a vehicle in 2017.
Then, object tracking data were obtained for vehicles rapidly
approaching the MDL area along the road.

III. OBJECT TRACKING USING A KALMAN FILTER

A. Motion models

Two motion models (CAM and CTRAM) were applied in
combination with a Kalman filter to compare the performance
of the object tracking system with each model, as shown in
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Fig. 5: Tracking performance evaluation for objects 1 and 2 (position and velocity)

Fig. 3. The equations for these two motion models are given
in (1), where black font corresponds to CAM and blue font
corresponds to CTRAM. Here, the state vectors for CAM and
CTRAM are px, py, vel, acc, yaw, and yawrate, and the
radar measurement noise parameters applied in each model
are shown in Table 1.

B. Performance

The tracking performance was analyzed for two simultane-
ously acquired objects, and the CAM and CTRAM tracking
results for the two approaching objects were compared. First,
the position accuracy is shown in Fig. 4(a); the positions
of both objects are displayed together in this figure. As

TABLE I: Standard deviations of radar measurement noise for
CAM and CTRAM. From left to right (as listed for CTRAM),
the units of the parameters are m, m/s, m/s2, rad, and rad/s,
respectively.

Parameter CAM CTRAM
px, py vel yaw yawrate px, py vel acc yaw yawrate

Value 0.1 0.1 0.1 0.5 0.1 0.1 0.01 0.1 0.5

shown in the position trajectory plot, the tracking results
obtained with the Kalman filter exhibit reduced instantaneous
position variations compared to the measured values, and the
trajectories are smoother. However, the CAM results slightly
differ from the measured values, unlike those of CTRAM.

This tendency is even more pronounced for velocity. As
with position, the Kalman filter smooths out rapid increases
or decreases in velocity compared to the measured values.
Moreover, CTRAM displays superior performance compared
to CAM, with a smooth trajectory very similar to that of the
measured values, as shown in Fig. 4(b).

The error of CAM likely arises because the turn rate is
not considered. In the next section, the magnitude of the
error associated with this linear approximation is quantitatively
evaluated.

C. Evaluation

Object tracking performance should be evaluated by com-
paring the actual position of an object with its predicted
position. However, it can be difficult to obtain the ground-
truth position values of objects for reference. For this purpose,
a radar system was installed on the ground 10 m from the

19



TABLE II: Root mean square errors (RMSEs) of CAM and
CTRAM w.r.t. the measured data for objects 1 and 2

RMSE
Object 1 Object 2

CAM CTRAM CAM CTRAM
Position 0.1660 0.0695 0.3009 0.0902
Velocity 0.7338 0.1264 0.8070 0.0584

TABLE III: Processing time comparison (s)

Average time Std. dev. time

Tracking w/CAM 0.00118015 0.00031656

Tracking w/CTRAM 0.00222676 0.00082623

road to obtain accurate object location data to be used as the
ground-truth reference values.

The tracking performance of CAM and CTRAM was evalu-
ated by comparing the measured and predicted data for multi-
ple objects moving on the road based on the characteristics of
the radar sensor. Fig. 5 shows the measured data (blue line), the
CAM tracking results (green line), and the CTRAM tracking
data (red line) for the positions and velocities of two objects
(objects 1 and 2). The RMSEs between the measured data and
the CAM and CTRAM tracking results for these two objects
are shown in Table II. The results confirm that the RMSEs of
CTRAM are smaller than those of CAM for both the positions
and velocities of all objects.

The computational speed performance was compared by
calculating the processing times of CAM and CTRAM. The
processing time was calculated as the total time from when
the measured value was input into the Kalman filter until the
predicted value was obtained. Because CAM is based on a
relatively simple motion model that does not consider the turn
rate, its processing time was very low compared to that of
CTRAM, as expected; however, the actual processing time of
CTRAM was still very short, and its latency was negligible.
This finding suggests that both CAM and CTRAM are capable
of real-time object tracking.

IV. CONCLUSION

This paper focuses on tracking multiple target objects by
means of a radar sensor for security and surveillance, and
the tracking performance of two proposed models is evaluated
by comparing the prediction results to measured object data.
The data used for analysis in this paper include radar sensor
data collected for two objects moving along a road, measured
from a height of 15 m. At the time of measurement, the two
objects were tracked simultaneously with a fixed radar sensor.
The experimental results show that tracking with CTRAM is
more robust against measurement errors than tracking with
CAM. Notably, CTRAM provides better tracking accuracy
for moving objects because it considers not only acceleration
but also a constant turn rate. However, its accuracy may vary
depending on the movement characteristics of a given object
(for example, whether the object is moving in a completely
straight line). Thus, either CAM or CTRAM could be op-

timal depending on the movement state of the target object
(acceleration, turn rate, etc.). Combined filter-based models
that apply various motion models depending on the movement
of the detected objects are often used, but such models are
complicated because they require motion models for all cases,
and errors occur when the motion model changes (e.g., from
CAM to CTRAM).

Considering the requirements of boundary monitoring sys-
tems (object tracking using a fixed radar sensor, the curvature
of the roads in the monitoring area, etc.), applying a motion
model suitable for each region can yield good tracking per-
formance. However, in most cases, there will be many roads
with slight curves, meaning that CTRAM is expected to be
more effective than CAM, as confirmed in this study.

Although there are still many challenges to be solved, this
study has confirmed the possibility of applying automotive
radar in boundary monitoring systems. Currently, the South
Korean military is attempting to implement a science and
technology force by promoting “Defense Innovation 4.0”,
and in this context, a highly efficient and effective detection
system can be developed through the implementation of radar-
based security technology using Kalman filters, as proposed
in this study. In future research, we will develop optimal
sensing hardware and tracking algorithms for application in 4D
radar tracking systems for security and surveillance purposes,
including military use.
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ABSTRACT

Supervised learning has been used to solve monaural speech
enhancement problem, offering state-of-the-art performance.
However, clean training data is difficult or expensive to ob-
tain in real room environments, which limits the training of
supervised learning-based methods. In addition, mismatch
conditions e.g., noises in the testing stages may be unseen
in the training stage, present a common challenge. In this
paper, we propose a self-supervised learning-based monau-
ral speech enhancement method, using two autoencoders
i.e., the speech autoencoder (SAE) and mixture autoencoder
(MAE), with a shared layer, which help to mitigate mis-
match conditions by learning a shared latent space between
speech and mixture. To further improve the enhancement
performance, we also propose phase-aware training and
multi-resolution spectral losses. The latent representations
of the amplitude and phase are independently learned in two
decoders of the proposed SAE with only a very limited set
of clean speech signals. Moreover, multi-resolution spectral
losses help extract rich feature information. Experimental
results on a benchmark dataset demonstrate that the pro-
posed method outperforms the state-of-the-art self-supervised
and supervised approaches. The source code is available at
https://github.com/Yukino-3/Complex-SSL-SE.1

Index Terms— monaural speech enhancement, self-
supervised learning, multi-resolution spectral losses, phase-
aware, joint training

1. INTRODUCTION

Monaural speech enhancement has attracted considerable re-
search attention and deep learning techniques have signifi-
cantly improved its performance with a supervised learning
(SL) strategy [1, 2, 3, 4]. However, supervised training of the
networks requires large sets of labelled paired data. More-
over, a trained model may suffer from performance degra-
dation when deployed in previously unseen conditions e.g.,

1For the purpose of open access, the authors have applied a creative com-
mons attribution (CC BY) licence to any author accepted manuscript version
arising.

a mismatch of room environments between the training and
testing sets. To address the above limitations, self-supervised
learning (SSL) techniques are applied as an effective alterna-
tive for monaural speech enhancement [5, 6, 7, 8].

The first SSL-based speech enhancement (SSE) method is
proposed by Wang et al. [6], where an autoencoder is used to
learn a latent representation of clean speech signals as the pre-
task, and another autoencoder is used to learn the shared rep-
resentation between the clean speech and its mixtures. How-
ever, the SSE method only learns a shared latent space with
unseen speakers [6], its generalization ability to unseen noises
and room environments is still limited. Moreover, the phase
information of speech signals is ignored in [6]. To address
the limitations in [6], we propose a joint training algorithm to
improve the speech enhancement performance by using two
autoencoders, namely, the speech autoencoder (SAE) and the
mixture autoencoder (MAE). The SAE is trained with clean
speech signals to learn their latent representations with the
amplitude and phase information processed with two indi-
vidual decoders. The MAE is trained with noisy mixtures
recorded in real room environments, where a shared layer
from the SAE and MAE is used to obtain a joint latent space
of the learned clean speech and noisy mixture representations.
The last layer of the encoder in the MAE is replaced by the
one in the shared layer after the training stage is completed.
To improve the generalization ability of the network model,
the training data used for the MAE is unseen in the training
data (i.e. unseen room environments) used for the SAE, which
helps to train the shared layer to address the mismatch condi-
tions between the training and testing stages.

2. PROPOSED METHOD

2.1. Network Architecture

The block diagram of the proposed method is shown in Fig. 1.
Initially, multi-resolution features are extracted from the spec-
tra S i.e., the input of the SAE. In order to preserve the desired
information in the signal, in the encoder named ES , each con-
volutional layer generates the feature map of a specific resolu-
tion, which is then scaled to produce the latent representation

979-8-3503-3732-7/23/$31.00 ©2023 IEEE 21



Fig. 1. The overall architecture of the proposed method. (a) Training: From speech spectra S, the multi-resolution features are
extracted with different window sizes as the input of ES . Then, the latent representation of the speech feature ZS is learned
via ES . Then, the reconstructed amplitude and phase of clean spectra are independently obtained as the output by using DS,A

and DS,P . Similarly, from unseen noisy mixture M, the multi-resolution features are extracted as the input of the EM and the
mixture feature map ZM is learned. Meanwhile, a shared latent space between ZS and ZM improves the generalization ability
of the MAE. (b) Testing: Multi-resolution mixture spectra M which are unseen with M in (a) are fed into the trained EM . The
enhanced signal Ŝ is obtained with the estimate spectrogram from the speech recovery module.

ZS with multi-resolutions. The optimal weights for combin-
ing the spectra with each resolution are learned with the target
i.e., the feature map of the clean speech, during the training
of ES .

In the proposed method, two decoders DS,A and DS,P are
applied in SAE to learn the amplitude and phase of speech,
respectively. In detail, the latent representations of both the
amplitude and phase are learned by minimizing the discrep-
ancy between the input representation and the corresponding
reconstruction. The multi-resolution spectra of the estimated
speech signals are obtained.

Different from the SAE, the MAE only requires access
to unseen noisy mixtures M. The multi-resolution features
are extracted from the noisy mixture and fed to EM . Con-
sequently, the latent representation of the mixture is obtained
as the output of EM and exploited to modify the loss func-
tions. Then, the speech feature representation ZS and mix-
ture representation ZM are used to learn a cross-domain la-
tent space. To achieve that, we concatenate the last layer from
both ES and EM and create the shared layer between two au-
toencoders. The mixture representation is passed through the
decoders of the SAE to get the enhanced version of the mix-
ture representation. Benefiting from the learned speech rep-
resentation, a mapping relationship from the mixture to the
target speech is learned through DS,A and DS,P . The shared
latent space between the SAE and MAE is used to further
learn the latent representation of the unseen mixture spectra.
The last layer of EM is replaced by the one in the shared layer

after the training stage is completed.
In the testing stage, the feature of the noisy mixture is

extracted and fed into the trained EM to obtain the latent rep-
resentation of the mixture feature. This representation is then
used with the decoders DS,A, and DS,P to decode the esti-
mated amplitude and phase of the target speech spectra, re-
spectively. Finally, in the speech recovery module, the phase
is recovered by re-wrapping the estimated unwrapped phase
of speech. Then, it is used with the recovered speech ampli-
tude to reconstruct the estimated speech signal.

2.2. Loss Functions

Different from previous SSL methods [6, 7, 8, 9, 10], the
proposed method exploits multi-resolution feature maps for
the network training. Inspired by [11], we use the multi-
resolution STFT loss as an auxiliary loss to improve the
stability and efficiency for model training. The feature map is
rescaled with the same frame shift (i.e. 32), but with different
window sizes (1024, 512, 256, and 128). Each STFT loss
term estimates the frame-level difference between the clean
speech spectrogram and the corresponding reconstructed
speech spectrogram.

For the SAE training, the loss LS is the sum of four multi-
resolution losses defined on amplitude and phase between the
clean speech feature and the reconstructed speech feature as:

LS =
I∑

i=1

(∥Si
a − Ŝi

a∥22 + ∥Si
p − Ŝi

p∥22) (1)
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where i refers to the index of the multi-resolution feature
maps, subscripts a and p denote the amplitude and phase,
respectively. Once the loss function is minimized, we now
use the trained SAE and noisy mixtures to train the MAE.
The loss LM denotes the sum of the multi-resolution losses
between the noisy mixture feature and the corresponding re-
construction as:

LM =

I∑
i=1

(∥Mi − M̂i∥22) (2)

Then, the shared layer between the two autoencoders is used
to learn a shared latent representation to mitigate the mis-
match between the training and testing conditions. To achieve
this, the amplitude and phase of Zi

M are enhanced by the
trained DS,A and DS,P , respectively. Then, the amplitude
and phase of the enhanced spectra are mapped back by ES to
produce the estimated mixture representation Ẑi

M. The over-
all MAE loss with the hyper-parameter λ is given as:

LMAE = LM + λ ·
I∑

i=1

∥∥∥Zi
M − Ẑi

M

∥∥∥2
2

(3)

3. EXPERIMENTAL RESULTS

3.1. Datasets

The Device And Produced Speech (DAPS) dataset [12] is
used in these experiments as [6]. The noisy data consists of
20 speakers (10 female and 10 male) each reading out 5 story
excerpts in indoor environments with different real room im-
pulse responses (RIRs). In addition, the clean raw data are
collected in an acoustically treated low noise, low reflection
vocal booth of a professional recording studio using a micro-
phone with a flat frequency response [12]. Most non-speech
sounds such as breaths and lip smacks were removed from the
recordings by the sound engineer to create clean speech [12].
We cut 14 minutes of data from each speaker into 28 clips
where each clip has 30 seconds long. To show the generaliza-
tion ability of the proposed SSL method, we split utterances
from different speakers in the data preprocessing stage. In
the training stage, 420 clean utterances from 15 speakers are
randomly selected. For each environment, we first randomly
select 28 utterances from a speaker to generate the training
data for the SAE. To train the MAE, 392 utterances from 14
speakers are used to generate the mixtures with three differ-
ent background noises (factory, babble, and cafe) from the
NOISEX dataset [13] with four SNR levels (-10, -5, 0, and 5
dB). Therefore, the data used for training MAE is unseen in
the data used for training SAE. Moreover, in the testing stage,
the remaining 140 utterances of 5 speakers, which are unseen
from those in the training stage, are used to generate the mix-
tures with the same SNR levels but different background noise
types and room environments as those in the training stage.

3.2. Experimental Setup and Performance Metrics

Similar to [6, 14, 15], the proposed autoencoders use vari-
ational autoencoders (VAEs) as the backbone. In the SAE,
ES , DS,A, and DS,P all consist of four 1-D convolutional
layers. In the MAE, EM , DM,A, and DM,P all consist of six
1-D convolutional layers. The proposed method is trained by
using the Adam optimizer with a learning rate of 0.001 and
batch size of 20. The coefficient λ is used in (3) to constraint
loss terms and is set empirically with different experiments.
For most of the experiments, it is set to 0.01 according to
the grid search results by using 0.001, 0.01, 0.1, 1, and 10
as options for the parameter values. However, it is set to 0.1
because the latent representation loss plays a more important
role in some specific experiments. The number of training
epochs is 700 and 1500 for SAE and MAE, respectively.

Similar to [6], we use composite metrics that approximate
the Mean Opinion Score (MOS) including COVL, i.e. the
MOS predictor of overall signal quality, CBAK, i.e. the MOS
predictor of background-noise intrusiveness, CSIG, i.e. the
MOS predictor of signal distortion [16], and Perceptual Eval-
uation of Speech Quality (PESQ). Higher values of these per-
formance metrics imply better enhancement performance.

3.3. Comparisons with SSL Methods

In this section, we compare the proposed method with three
state-of-the-art SSL speech enhancement approaches [6, 7, 8].
The first method is SSE [6] which exploits two autoencoders
to estimate speech and mixture, respectively. The second
method is the pre-training vector quantization method (PT-
VQ) [7], which combines WavLM [17] and Transformer en-
coder. The third method applies a cross-domain feature (CF)
which integrates the SSL representation and spectrogram [8].
This baseline consists of 2 linear layers, two-layered bidirec-
tional long short-term memory (BLSTM) of 256 hidden units
and a sigmoid activation to generate the prediction mask. Ta-
ble 1 shows the speech enhancement performance with PESQ,
CSIG, CBAK, and COVL at different SNR levels.

It can be seen from Table 1 that the proposed method out-
performs the state-of-the-art SSL methods in terms of all four
performance measures. The proposed method and baselines
are also compared at different SNR levels. From the experi-
mental results, it can be seen that the proposed method out-
performs the baselines even at a relatively low SNR level i.e.,
-5 dB. The proposed method has 7.6%, 7.0%, 7.8%, and 7.4%
improvements compared with the CF method in terms of four
performance measures at -5 dB SNR level.

3.4. Comparisons with SL Methods

In this section, we further compare the proposed method
with state-of-the-art SL approaches [1, 2, 4]. The DBT-Net
aims to recover the coarse- and fine-grained regions of the
overall spectrogram in parallel [2]. An attention-in-attention
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Table 1. Comparison with SSL methods. Each result is the average value of 1,260 (140 signals×3noise types×3 room envi-
ronments) experiments. Italic shows the proposed methods. Bold indicates the best results.

PESQ CSIG CBAK COVL
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5
SSE [6] 1.32 1.33 1.34 1.97 2.04 2.09 1.74 1.76 1.77 1.59 1.65 1.68

PT-VQ [7] 1.68 1.70 1.71 2.24 2.27 2.29 1.76 1.79 1.80 1.72 1.77 1.81
CF [8] 1.71 1.74 1.77 2.29 2.30 2.35 1.80 1.89 1.96 1.76 1.80 1.86

Proposed 1.84 1.89 1.91 2.45 2.47 2.49 1.94 2.10 2.23 1.89 1.96 2.03

transformer-based network is adopted for better feature learn-
ing. The second method is frequency recurrent convolutional
recurrent network (FRCRN) which boosts feature map along
the frequency axis [4]. Moreover, in the spectrogram de-
composition (SD) method, feature maps are composed of
spectra containing evident speech components according to
the mask value [1]. These feature maps make the boundary
information of speech components clear by ignoring others,
thus boosting the sensitivity of the model to input features.
Table 2 shows the speech enhancement performance with
PESQ, CSIG, CBAK, and COVL.

Table 2. Comparison with SL methods. Each result is the
average value of 3,780 experiments (140 signals×3 noise
types×3 room environments×3 SNR levels). Italic shows the
proposed methods. Bold indicates the best results.

PESQ CSIG CBAK COVL
SD [1] 1.68 2.21 1.72 1.66

DBT-Net [2] 1.69 2.21 1.76 1.68
FRCRN [4] 1.72 2.25 1.83 1.74
Proposed 1.88 2.47 2.09 1.96

These SL methods are originally trained with large
datasets e.g., VoiceBank [18] and DEMAND datasets [19]
which contain 11,572 utterances in [2]. However, in these
comparison experiments, we use only 420 utterances in the
DAPS dataset to train all the methods because the clean
speech data is difficult or expensive to obtain in real-world
scenarios, e.g., talking in an office. The training of the
supervised methods strongly relies on the large-scale data
to facilitate the model to learn structural information [20].
Therefore, the speech enhancement performance of super-
vised methods suffers from significant degradation compared
with its original implementation. In addition, different from
the original implementation [2, 4, 1], unseen speakers, noises,
and room environments are also used to generate noisy mix-
tures in the testing stage, which leads to a further drop in the
reproduced performance results. In this work, the proposed
method uses the shared layer to learn a joint latent space be-
tween the SAE and MAE in unseen cases. Thus, the speech
enhancement performance is improved although the model is
tested in unseen cases.

3.5. Ablation Study

In this section, we investigate the effectiveness of each contri-
bution. Table 3 shows the speech enhancement performance
with PESQ, CSIG, CBAK, and COVL.

Table 3. Ablation study of the three contributions in
the proposed method. Each result is the average value
of 3,780 experiments (140 signals×3 noise types×3 room
environments×3 SNR levels). The shared layer and multi-
resolution are abbreviated as S-L and M-R, respectively.

Ablation Settings PESQ CSIG CBAK COVLPhase S-L M-R
✗ ✗ ✗ 1.33 2.03 1.76 1.64
✓ ✗ ✗ 1.43 2.15 1.83 1.68
✗ ✓ ✗ 1.59 2.26 1.98 1.81
✗ ✗ ✓ 1.39 2.10 1.79 1.65

From Table 3, it can be observed that the performance is
improved by each contribution among all four performance
metrics. The improvement of the proposed shared layer is
more significant than the use of the phase-aware and multi-
resolution spectral losses. Because the shared latent space
between the two autoencoders is learned at the last layers of
ES and EM , the speech signal can be estimated from unseen
noisy mixtures using a network that is trainable without la-
belled training data.

4. CONCLUSION

In this paper, we have presented a self-supervised learning
based method with complex spectra and limited training data
to address the monaural speech enhancement problem. The
cross-domain latent representation for unseen noisy mixtures
was learned by using the proposed shared layer. To fur-
ther improve the generalization ability, we proposed phase-
aware decoders and multi-resolution spectral losses based on
the multi-resolution feature maps. The experimental results
showed that the proposed method outperformed the state-of-
the-art approaches in a challenging case where the speakers,
background noises, and room environments are unseen in
the testing stage. Furthermore, the relationship between the
amplitude and phase may be relevant to future studies.
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Abstract—Underwater passive target classification is an open 

set classification problem, where quite often test data of those 

classes, which were not present during training phase is 

encountered and it is a challenging task due to the intrinsic 

complexity of the radiated noise from the target. Conventional 

classification architectures with spectral processing often fail 

miserably. Supervised learning methods like deep learning, 

offers higher success rate but they require enormous amount of 

data for training and their performance in open set classification 

is again a challenge. This paper presents an effective method for 

underwater target classification by the beta variational 

autoencoder (β − VAE) model with Mel Frequency Cepstral 

Coefficients (MFCCs) features. MFCC effectively utilises the 

non-linear auditory effect of the human ear with different 

frequencies. β – VAE, being one of the generative models, is 

capable of generalizing with less amount of data. Classification 

experiments on various underwater targets have been performed 

with the proposed method, and results indicate that the proposed 

method is effective in underwater passive target classification. 

Keywords— Open Set Classification, Supervised Learning, 

Deep Learning, Variational Autoencoder, Mel Frequency Cepstral 

Coefficients. 

I. INTRODUCTION 

Classification of underwater passive target refers to 
processing of the radiated noise from the target and identifying 
the type of the target. This has utmost importance in many 
fields especially in the anti-submarine warfare. The 
classification of underwater passive target is highly 
challenging due to the low source level and non-availability of 
sufficient data. Recently, substantial improvements have been 
reported in the underwater passive target classification task, 
mainly due to the advancement in machine learning. Most of 
the work reported are based on supervised learning, where 
enormous amount of data is essential for appreciable level of 
performance.  There are many supervised deep learning-based 
models available in the literature for passive underwater target 
classification, but they require large amount of data [1]-[3] and 
their performance in open set classification is not in 
appreciable level. 

There are many open set architectures proposed for 

classification where the expected performance, when tested on 

an unseen data will be comparably better [4]-[7]. But most of 

the method proposed require tuning of many parameters with 

good amount of data, which is very difficult in underwater 

passive target classification. In areas like underwater passive 

field where availability of quality data is of real concern, a 

model which can generalise effectively with less amount of 

data is an ideal choice for classification tasks. Generative 

models are of this nature where it can generalise with less 

amount of data. Decebal et al. [8] proposed a one-shot learning 

method with a mixture of variational autoencoders for 

classification tasks. The method proposed above consists of 

variational autoencoder model for each class, and classification 

is performed based on the reconstruction error and it is able to 

achieve better accuracy. Shengchen Li et al. [9] proposed 

β−VAE based heart abnormality detection based on 

phonocardiogram. They proposed the model as an outlier 

detector with the requirement of only normal samples during 

training.  Satheesh Chandran C et al. [10] proposed a method 

for underwater target classification using deep generative 

β−VAE. The above method assumes fixed number of classes 

for classification, so it does not come under open set 

architecture. Since this method involves large number of 

operations like convolution, it is computationally expensive as 

well. There are many models available in the literature where 

β−VAE deployed as an outlier detector and attained better 

performance [11]-[14]. β−VAE being a generative model with 

unsupervised learning capability is taken as the model in this 

proposed method. Even though vanilla VAE proven to provide 

satisfactory results in simple data sets, its beta version, having 

a hyperparameter beta on the VAE, produces better output 

even in complex data sets. Beta VAE imposes a limit on the 

reconstruction error, and it produces a better disentangled 

representation of the latent vector. Experiments have been 

performed with the above hyperparameter in the proposed 

model. Another crucial element for a successful classifier is 

extracting the suitable feature set. In this paper we propose 
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MFCC feature from the radiated noise of the target as the 

feature vector for the β−VAE model for underwater passive 

target classification. MFCC feature is one of the powerful, 

widely used feature for speech recognition.  Yuze Tong et al. 

[15] proposed MFCC features with k-nearest neighbour (K-

NN) algorithm for underwater target classification. The above 

paper has demonstrated that with combining MFCC features to 

classify different underwater targets, it can substantially reduce 

the dependence on sonar operator and there by the interaction 

of sonar operator with the computer system. 

MFCC is capable of estimating human auditory response 

in a better way than other cepstral feature extraction 

techniques. This effective mechanism helps to minimize the 

interaction of sonar operators with the computer system in the 

actual combat environment. The proposed method is evaluated 

based on the recording performed during various expeditions 

conducted in the Indian Ocean region. This method labels a 

target as unclassified either when its data belongs to a new 

class or when there is no sufficient confidence to classify it as 

an existing class. This reduces the chance of misclassification 

and it provides an information to the operator that the new data 

can possibly be from a new class of target as well. Reduction 

of misclassifications and unknown class identifications are one 

of the major requirements in underwater passive target 

classification. The proposed method is scalable and can include 

models for new classes as well without retraining the entire 

system. 

The rest of the paper is organised in the following way. 
First, the proposed method is discussed, followed by the results 
and discussions. Then the conclusion is presented. 

II. MATERIALS AND METHODS 

A. Mel Frequency Cepstral Coefficients 

Human auditory system has a non-linear characteristics, 
and it is more sensitive to low frequencies. MFCC is based on 
Mel frequency, which can  well characterise this non-linearity 
[15]. The process involved in obtaining MFCC feature vector 
from the sound signal is given below, 

a) In the pre-process step, framing and windowing is applied 
on the signal. 

b) Apply the Short Time Fourier Transform and perform the 
power spectrum calculation. 

c) Map the linear power spectrum into non-linear one on mel 
scale with the application of triangular filter banks. 

d) Apply the log of these spectrum values to obtain the log 
filter bank energies. 

e) Take the discrete cosine transform of this log filter bank 
energies. 

f) MFCCs are the amplitude of the resultant spectrum. 

 

B. β−VAE 

VAEs are deep generative networks which have both 
encoder and decoder networks similar to auto encoders. They 
learn to map their input X to latent representation z, by learning 
the probabilistic distribution Q(z/X). VAE assumes that input 
X and z follow isotropic Gaussian distribution [10]. 

The encoder and decoder network of VAE is given by 
Qφ(z|X) and Pθ(X|z) respectively. φ and θ are neural network 
parameters. 

The objective function of VAE is given below in  (1), 

             LVAE(φ, θ; X) = LRC +  LKL                                (1) 

where LRC is the reconstruction loss and LKL is the Kullback-

Leibler (KL) divergence loss. 

The same can be represented mathematically as in (2) below, 

 LVAE(φ, θ; X) = EQ(z|X)[log(P(X|z)] – DKL[Q(z|X) || P(z)]  (2) 

φ and θ notations are avoided for simplicity. E and DKL denote 
expected value and KL divergence respectively. In the above 
equation first term represents the marginal likelihood of the 
data, which denotes the reconstruction loss and the second term 
indicates the KL divergence loss. 

β−VAE introduces the use of Lagrange multiplier β on the 
KL divergence term in the original VAE formulation. It seeks 
to discover disentangled latent representation. In general, 
higher value of β encourages learning of disentangled 
representation, but it is having a trade-off between 
reconstruction fidelity and quality of disentanglement within 
the latent representation.  

The objective function of the β−VAE is denoted as shown 

in (3) , 

                    LVAE =LRC + β* LKL                          (3) 

Audio data of the target which is the input to the proposed 

classification system is split into multiple frames. Then the 

MFCC values of each frame are calculated. MFCC feature 

vector from each frame is given as input to the β−VAE model 

during training. For each class of target, a separate β−VAE is 

created. Once the training phase is over, the same MFCC 

feature vectors which are provided during the training phase is 

fed to the same model, and the reconstruction error is 

calculated for each frame. 99th percentile error has been noted 

for each class. Whenever a new test data comes, it passes 

through each classifier and the reconstruction error is noted, if 

the newly calculated error is within the 99th percentiles of that 

class, the method declares the data as an entity belongs to that 

class. If many such classifiers declare that the new test data 

belongs to it, the one which has least reconstruction error, will 

be reported as the class of the test data. If none of the classifiers 

declare that the test data belongs to it, the method declares that 

the class of the sample as unclassified.  

The pseudocode of the proposed method is given below in 

Algorithm 1. 
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Let S be the sample audio signal to be classified, it is split 

into multiple frames.  Sf represents MFCC feature vector of 

each frame of S. N represents total number of frames. T 

denotes the threshold, which is the minimum number of frames 

out of N, in which the proposed method demands that the 

frequency of any one of the models belongs to a particular 

class, to declare that the sample belongs to that particular class. 

Let clfrt is a classifier created for some class t, its 99th 

percentile error is et
99 and clfr is the set of classifiers created 

for each class of targets. 

Algorithm 1: Classifier Algorithm 

Input: Audio of the target. 

Output: Class of the target. 

1: Create clfrt, et
99, � = 1, 2, . . . , M,  M is the total number of 

trained classes. 

2: For each Sf  in S do 

3:     {minError,class}={} 

4:      For each clfrt  in clfr do 

5:            e = getReconstructionError(clfrt,Sf) 

6:            if (e <= et
99) then 

7:                update({minError,class}) 

8:             end if 

9:        end for 

10:  end for 

11: {class,frequency} = getMostFrequentClass() 

12: if (frequency  <  T) then 

13:      return “ ” 

14: end if 

15: return class 

Once the getMostFrequentClass function returns the class 

having most confidence for the majority of frames in the data, 

the algorithm imposes a condition that the frequency of that 

class should be at least equal to a threshold specified. If the 

above condition is not met, then the algorithm will declare the 

class as unclassified. Thereby it takes care of those samples on 

which proposed method does not have sufficient confidence 

and samples belongs to unknown classes as well, in that way it 

avoids the possibility of misclassification. Once the operator 

knows the class of those samples declared as unclassified, they 

can train the model with the actual label, in that case there 

exists two scenarios, first scenario consists of data belongs to 

existing class and the second one includes data belongs to a 

new class. In the first case user have to train the existing β-

VAE model with the new data, and in the second case user have 

to create a new β-VAE and train with the new data, without 

retraining the entire models. Thereby the proposed method is 

scalable, which can take into account of new classes as well, 

enabling it to perform training in online mode. 

III. RESULTS AND DISCUSSIONS 

Classification is performed on two kinds of audio data sets, 

first one consists of three underwater targets, one ship and two 

submarine targets, they are named as class A, B and C 

respectively. Second data set consist of five ship targets, 

namely class D, E, F, G and H. All data have been collected 

during various expeditions conducted in the Indian ocean with 

passive sonar systems. First data set is collected from sonar 

fitted on ship 1 and second set is collected from sonar fitted in 

ship 2. Data from underwater targets belong to classes other 

than the ones used for training, called unknown classes is also 

included in the test phase. U denotes unknown class data. 

Those data which are declared as unclassified by the proposed 

method is denoted by UC. 

Two parameters have been studied for understanding their 

significance on the accuracy of the classification by the 

proposed method. The experiments have been conducted with 

various values of β, as well as with four different types of 

activation functions, which includes Rectified Linear Unit 

(ReLU), Scaled Exponential Linear Unit (SELU), Leaky 

RELU and Sigmoid activation functions. The tested β values 

include 0.001, 0.01, 1, 2, 4 and 8.  

The proposed method is compared with one class Support 

Vector Machine (SVM) model and Isolation Forest model. For 

each class, a separate model is created with one class SVM and 

isolation forest during training as in the case of the proposed 

method. Test data passes through all the available models in 

both of the above methods. The model which declares most 

frames belong to it, its class will be declared as the class of the 

test data. Otherwise, the test data is declared as unclassified. 

Two sets of MFCC features are also considered for 

classification. Out of the two sets of MFCC, one is of 40 

MFCC coefficients, namely normal MFCC, another one is 

having the combination of first 12 (static) MFCC coefficients, 

and their 12 Delta (differential) MFCC coefficients and their 

12 delta-delta (acceleration) MFCC coefficients, namely delta 

MFCC. First coefficient of MFCC has been discarded while 

selecting the features of both sets. The delta coefficients are 

computed using the following formula (4) 

∆ₜ =  
∑ �(�ₜ₊ₙ � �ₜ₋ₙ)�

���

� ∑ ���
���

                                (4) 

∆ₜ  is delta coefficient from frame t, computed from static 

coefficients ct-n to ct+n. Delta-delta coefficients are also 

computed with above formula but from differential 

coefficients instead of static coefficients. N is taken as 2. 

The metrics used to evaluate the models are accuracy, 

precision and recall. Precision used is macro precision, where 

precision of each class is calculated and average of the same is 

calculated, similarly macro recall is used for evaluating recall. 

When the methods declare as unclassified for the above two 
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data sets, mainly data set 1 and 2, it is counted as a wrong 

prediction, because the ground truth is known. The methods 

are also tested with data from unknown classes as well. The 

results obtained during the analysis phase is presented in the 

tables below. 

A. Data Set 1 

Each audio data in data set 1 consists of 512 millisecond 

duration. Data of classes A, B and C is split into train and test 

set with 60:40 ratio, samples of targets belong to unknown 

class is used only during testing phase, the details of the same 

is given below, in the table 1.  

The experiment is repeated 30 times, by randomly splitting 

data into test and train set with stratified split and different 

random state and the average accuracy, precision and recall are 

calculated.  

Out of the two sets of features delta MFCC provides better 

accuracy in all the three methods. Out of the three methods, the 

proposed method has better performance compared to both one 

class SVM and isolation forest. 

The proposed method attained maximum accuracy, when 

the β value is 4 and the activation function used is SELU. The 

best results obtained for all the above methods with delta 

MFCC feature is given in table 2.  Average confusion matrix 

obtained for the above set of β and activation function in case 

of the proposed method is given in table 3. 

TABLE 1. TRAIN AND TEST OF DATA SET 1. 

Class Train Data 

Set Size 

Test Data Set 

Size 

Total Data Size 

A 1080 720 1800 

B 864 576 1440 

C 768 512 1280 

U 0 400 400 

 

TABLE 2. RESULT OF DATA SET 1. 

Method Feature 

Used 

Accuracy Precision Recall 

Proposed 

Method 

Delta 

MFCC 

94.11% 93.61% 94.67% 

One Class 

SVM 

Delta 

MFCC 

71.92% 84.8% 73.63% 

Isolation 

Forest 

Delta 

MFCC 

68.45% 84.07% 73.68% 

  

 

TABLE 3. AVERAGE CONFUSION MATRIX OF PROPOSED METHOD WITH DATA 

SET 1 IN PERCENTAGE (%). 

 A B C UC 

A 92.77 0 3.05 4.16 

B 0 90.97 0 9.02 

C 1.1 0 94.92 3.90 

U 0 0 0 100 

 

B. Data Set 2 

Each audio data in data set 2 is consists of 512 millisecond 

duration. Data of target class D, E, F, G and H is split into train 

and test set with 60:40 ratio. Sample of targets belong to 

unknown class is used only during testing phase, the details of 

the same is given below, in the table 4. 

 The experiment is repeated 30 times, by randomly splitting 

data into test and train set with stratified split and different 

random state and the average accuracy, precision and recall are 

calculated. 

In this data set one class SVM and proposed method 

attained higher accuracy when the feature set used is delta 

MFCC. Isolation forest attained higher accuracy, when the 

feature used is normal MFCC. Clearly proposed method is 

having higher accuracy in the case of data set 2 also. 

As in the case of data set 1, the proposed method attained 

maximum accuracy, when the value of β is 4 and the activation 

function used is SELU. The best results obtained for all the 

above methods is given in table 5. Average confusion matrix 

obtained for the above set of β and activation function in case 

of the proposed method is given below in table 6. 

In the case of both of the datasets, the proposed method 

declared data belongs to unknown classes are as unclassified. 

There by the proposed method follows the open set 

architecture. The proposed method declares those sample, 

where sufficient confidence is unable to establish as also 

unclassified and thereby it reduces the chances of 

misclassification. By design the method is scalable and it is 

capable of performing online learning as well, thereby it is an 

ideal choice for underwater passive target classification, 

especially in the anti-submarine warfare. 

TABLE 4. TRAIN AND TEST OF DATA SET 2. 

Class Train Data  

set size 

Test Data  

set size 

Total Data Size 

D 720 480 1200 

E 744 496 1240 

F 696 464 1160 

G 864 576 1440 

H 888 592 1480 

U 0 400 400 

 

TABLE 5. RESULT OF DATA SET 2. 

Method Feature 

Used 

Accuracy Precision Recall 

Proposed 

Method 

Delta 

MFCC 

96.14% 95.91% 96.13% 

One Class 

SVM 

Delta 

MFCC 

74.06% 84.74% 75.78% 

Isolation 

Forest 

Normal 

MFCC 

80.11% 86.14% 81.41% 
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TABLE 6: AVERAGE CONFUSION MATRIX OF THE PROPOSED METHOD WITH 

DATA SET 2 IN PERCENTAGE (%). 

 D E F G H UC 

D 91.25 2.91 1.67 0 0 4.16 

E 0.80 94.35 1.61 0 0 3.22 

F 0.86 0 95.68 0 0 3.44 

G 0 0 0 97.56 0 2.43 

H 0 0 0 0 97.97 2.02 

U 0 0 0 0 0 100 

IV. CONCLUSION 

This paper proposes an effective method for underwater 

passive target classification by using MFCC features with β-

VAE model. The proposed method is compared with one class 

SVM and isolation forest models and it performs better than 

both of the methods. The method attained maximum accuracy, 

when the feature used is delta MFCC, with β value 4 and SELU 

activation function. This classification method is quite suitable 

in anti-submarine warfare scenarios, where it is desirable to 

minimize dependency on human operator. The method is 

scalable and it can perform online learning without retraining 

the entire models. The method has less misclassification error 

and it is effective in identifying unknown classes as well, 

which is one of the major requirements of underwater passive 

target classification. Due to the generative potential of the 

model, the proposed method can provide better performance 

with less amount of data, which makes it ideal for applications 

in real combat environment. 
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Abstract— Passive sonar target tracking is a challenging 

problem, especially due to the high ambient noise as well as 

multiple tracks originating from the same target. One of the 

features which is always available in a passive sonar system is the 

bearing of the target. So, passive bearing line tracking is a widely 

used tracking method in this field. Passive bearing line tracking 

is really challenged, in situations like low Signal to Noise Ratio 

(SNR) scenarios and when targets are spaced close to each other. 

This paper presents a track association system which associates 

sensor level tracks like passive bearing line tracks and multiple 

frequency line tracks, and provides feedback to sensor level 

tracking. This results in the performance enhancement of sensor 

level tracks like passive bearing line tracks. An enhanced 

multiple frequency line tracking (MFLT) method is also 

proposed in this paper, which will make the passive bearing line 

tracking more robust and accurate. The effectiveness of the 

proposed method is illustrated by various multi-target tracking 

simulation scenarios. 

Keywords—Passive Bearing Line Tracking, Track Association, 

Multiple Frequency Line Tracking. 

I. INTRODUCTION  

Distributed multisensory systems have gained momentum 
in underwater sonar applications due to their ability to provide 
accurate results.  In distributed multi sensor underwater sonar 
systems, individual sensor processing systems produces sensor 
level tracks and they send their tracks to a central system for 
associating the information to produce target level tracks. 
When the sensor level information is diverse, the challenge of 
associating the information to provide the target level picture 
increases. There are broadly two kinds of sonars - one is active 
sonar, where a specified signal is transmitted and the received 
echo from a target is processed and the other is passive sonar, 
where the radiated noise from a target is received and 
processed [1]. Transmitting active signal to detect the presence 
of a target is highly risky, especially from platforms like 
submarine, which are involved in the covert operations, 
because it reveals own identity. So, a passive sonar is an ideal 
sensor for platforms like submarines. However, passive sonar 
comes with many challenges, especially due to the non-ideal 
nature of the underwater environment and high ambient noise 

level. Due to these, the noise originating from the targets are 
received in several paths with low SNR [2]. Passive tracking is 
one of the critical features present in sonar for analysing the 
movement of the target as well as for classifying it, especially 
in anti-submarine warfare. 

Passive bearing line tracking is a common tracking 
mechanism deployed in this field, because azimuth (bearing) 
information is easy to obtain and not easily get disturbed. This 
method of tracking is really challenging in very low SNR 
conditions, as well as in scenarios where targets are closely 
spaced or when targets are crossing each other. Most of the 
time passive bearing line tracks fail to represent their targets, 
as they either degrade or fail to differentiate among themselves 
in above situations [3]. 

There are various methods available in the literature for 
solving of the situations like crossing of targets; however, their 
applications in passive sonar is less. Availability of ground 
truth is another challenge when the targets are close to each 
other. In those situations incorrect measurements can occur, 
which leads to wrong tracking even in methods with Kalman 
filter. Sonu Varghese et al. [3] proposed a method based on 
Nearest Neighbour Joint Probabilistic Data Association 
(NNJPDA) and Kalman filter. In this method, when targets 
crosses each other the track bearing depends only on predicted 
value and not on the measurement. The problem here is that 
when targets are spaced closely for a long period of time, the 
predicted values become invalid and this effects overall 
bearing tracking. 

Many tracking methods based only on bearing information 

[4]-[7] are present in literature. In scenarios where multiple 

targets are close by or targets are crossing, a tracking 

mechanism based only on bearing information will fail most of 

the time. Implementation of those algorithms in the real sonar 

environment might require manual intervention. In such 

situations, sonar operator has to manually re-initiate tracks 

most of the time, and this is a tiresome job. Track fusion-based 

feedback to individual sensor level tracks has been tried in this 

field in different forms; one such method is proposed by 

GUAN Xin et al. [8]. After every update the fused track is 
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communicated to local sensor level tracks, which uses this 

information as a priori information. The above method 

depends only on bearing-based feedback, which may not be 

accurate always. Another parameter which can be accurately 

measured in a passive sonar system is frequency of the target. 

Radiated noise from the underwater target is mainly comprised 

of mechanical and electrical noise. A single target can emit 

multiple frequencies. Multiple Hypothesis Tracking (MHT) 

[9]-[10] approach used in narrow band processing is capable of 

tracking multiple frequencies of the same target. MFLT 

implemented with MHT can be used to separate targets closely 

spaced in bearing. The information present in the MFLT can 

be used to correctly obtain the measurements for passive 

bearing line tracking even in scenarios with closely spaced 

targets as well as during target crossing. In a low SNR scenario, 

the passive energy may be feeble, but frequency information 

of the target can be present, and here, the information obtained 

using MFLT can be used for enhancing passive bearing line 

tracking. 

This paper presents a newly developed MFLT mechanism 
along with a track association method, which can give 
sufficient feedback to the passive bearing line tracking systems 
for correcting their tracking parameters. Track association 
mechanism is serving two important purposes here - one, it is 
able to produce target level identity by associating the sensor 
level tracks, and the other, it is able to provide feedback to 
individual sensor level tracking systems, which makes their 
function seamless and robust. 

II. MATERIAL AND METHODS 

The proposed track-association method, gets sensor level 
track data from various sensor level tracking systems, 
including passive bearing line tracking and MFLT. A single 
target can have multiple frequencies present in it. MFLT is a 
tracking method which tracks multiple frequencies of the same 
target, along with the bearing information [9]. Apart from 
associating the information, the association system provides 
feedback to individual sensor level track processing units 
(called trackers), about the correctness of their tracking 
parameters which is mainly bearing in this case. Individual 
trackers can assess the feedback and take necessary steps to 
make it accurate. 

A. Multiple Frequency Line Tracking 

A single target can have multiple frequencies. MFLT is a 
system developed to track multiple frequencies of the same 
target. Once Low Frequency Analyzer and Recorder (LOFAR) 
or Detection of Envelope Modulation on Noise (DEMON) 
processing of the signal has been performed, frequency vs. 
azimuth information will be obtained [1]. The proposed 
algorithm can be applied on the above information to obtain 
bearing-frequency tracking which can accommodate multiple 
frequencies from the same target. The algorithm assumes each 
target is having at least one frequency component which 
differentiate that target from another one. 

The proposed method comprises of Kalman filter based 
tracking on the frequency and bearing based model. The 
method consists of initiation of the track, followed by 

searching through the same bearing for identifying potential 
frequencies which are part of the current track. Each frequency 
component is taken as a separate track. After checking the 
consistency of the tracks, consistent tracks enter for further 
processing. All those near by tracks are identified and they are 
marked as in holding state. All those tracks which are in 
holding state, their measurements are not readily available, due 
to the presence of other tracks in the neighbouring area in terms 
of both frequency and bearing. Each target will be having at 
least one track in non-holding state, due to the assumption that 
at least one frequency component is present in each target 
which differentiate that target from another one and it can have 
zero or more tracks in holding state. Initially Kalman filter is 
applied only on non-holding tracks, once it is processed, 
Kalman filter will apply on holding tracks by taking the 
measurement values from their corresponding target’s non-
holding tracks. 

The model used for Kalman Filter is given below in (1)−(6)  

             ���� = ���� − 1� + ��� − 1�               (1) 

is the state model. 

���� = 
���� + ����                                  (2) 

is the measurement model. 

x�k� denotes the state vector at time k, and is defined as below, 

  ���� = 
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                                     (3) 

�� is the bearing at time k, ��� is the bearing rate, ��� is the 

rate of change of bearing rate and �� frequency. 

 

F is the state transition matrix, 

  F = 

⎣⎢
⎢⎡
1 �
0 1

�
� �� 0

� 00 0
0 0   1    0

0    1⎦⎥
⎥⎤               (4)     

                       
T denotes the time. w�k − 1� is the process noise. 
In matrix notation, 
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H  is called the measurement matrix, v(k) is the measurement 

noise. Assuming process noise  w�k� and measurement noise 
v�k� are zero mean, Gaussian distributed random variables 

with variance Q and R respectively, where Q is the process 

noise covariance matrix and R is the measurement noise 

covariance matrix. 

32



Once the individual tracks are formed, tracks belonging to 

the same target has to be identified and need to be associated. 

Nearest neighbour criteria on the bearing parameter along with 

the history of association is considered for the above track to 

track association. The association process of MFLT produces 

set of sensor level tracks with each track consisting of bearing 

information and set of frequencies. Each sensor level track 

produced by the above association corresponds to a target.  

The pseudo code for the proposed MFLT algorithm is given 

below in Algorithm 1. 

Let Tri represents ith track. Each Track is having a bearing 

and frequency information, for track Tri, they are Tri.b and 

Tri.f respectively. Trij represents ith track which is associated 

and it is a part of jth sensor level track. SLTrj denotes jth sensor 

level track. upDateMeaurements(Tr,Tri) function does the 

measurement update of Tr with values of Tri. Tr, Tr’ and Tr’’ 

denotes set of tracks, and SLTr denotes set of sensor level 

tracks. 

Algorithm 1: MFLT Algorithm     

Input: Frquency and bearing information in a 2D matrix, 

obtained after the LOFAR or DEMON processing. 

Output: Multiple Frequency Line Tracks                     

1: Initiate(Tri) 

2: Tr’ = possibleTracksOverSameBearing(Tri) 

3: Tr = getConsistentTracks(Tr’) 

4: while ( tillDeletionOfTracks() ) do 

5:        Tr’’ = getHoldingTracks(Tr) 

6:         kalmanFilter(Tr-Tr’’) 

7:         upDateMeaurements(Tr’’, Tr-Tr’’)  

8:         kalmanFilter(Tr’’) 

9:         SLTr = association(Tr)  

10:  end while 

B. Track Association 

In a multi-sensor system, a central entity is required to 

perform the task of associating the sensor level tracks to form 

target level tracks, this process is called track association. The 

proposed method models track to track association problem as 

an assignment problem. Sensor level tracks have to be 

associated with existing targets. Well-known Hungarian 

algorithm [11] is used for solving the above association. The 

cost matrix for the Hungarian algorithm is created with the 

frequency and bearing information from the sensor level 

tracks. The track association system performs one additional 

task of analysing individual tracks and provides sufficient 

feedback to the trackers about the accuracy of their reported 

parameters, mainly bearing in this case. 

Let C[M][N], be the cost matrix for the Hungarian 

algorithm, where M is the total number of tracks of a particular 

sensor type and N is the total number of targets present. C[i][j] 

represents the cost of assigning ith sensor level track to jth 

target. Let SLTri be the ith sensor level track and Tgj be the jth 

target, having bearing SLTri.b and Tgj.b respectively. SLTri.f 

and Tgj.f are representing set of frequencies present in the 

track and target respectively. Cost matrix will have cost from 

bearing as well from frequency matching as in (7)−(9). 

             C[i][j] = Bearing Cost + Frequency Cost       (7) 

  Bearing Cost = (_*�+,�-i.b, Tgj.b�                  (8) 

  Frequency Cost= (_��SLTri.f, Tgj.f�                 (9) 

d_b�b1, b2� represents bearing cost function, which is the 

bearing difference of b1 and b2. d_f�f1, f2� represents the 

frequency cost function which is the cost of assigning set f1 to 
set f2, and it can be obtained by performing Hungarian 

operation by modelling it as an assignment problem. Cost 

matrix has been formulated by taking into consideration the 

maximum bearing and frequency differences that can be 

allowed to associate a track to a target. If it is not in allowable 

range the corresponding entry can be filled with a very large 

value. Let Tgj.passive and Tgj.freqBearing represents set of 

passive sensor level tracks and average bearing of MLFT 

tracks present in the jth target. Let SLTri.tracker represent 

corresponding tracker for the ith track. ₸ represents threshold 

for sending the feedback, which is decided based on the 

expected target dynamics. SLTrij represents ith sensor level 

track is associated to jth target. Tg’ denotes existing targets. 

setSLTr represent set of sensor level tracks of various types, 

which include passive bearing line tracks, DEMON MFLT 

and LOFAR MFLT of various types of sensor arrays present. 

Once the cost matrix has been formulated, Hungarian 

algorithm is applied on the matrix. Then the tracks as well as 

their associated targets are obtained. In scenarios where 

targets are close to each other and when they cross each other 

the passive bearing line tracking may produce incorrect 

bearing information. This issue can be identified by the track 

association system by analysing the reported bearings of 

passive bearing line tracks and multiple frequency line tracks. 

Based on this information, track association system gives 

feedback to trackers. The proposed track association 

algorithm is given below in Algorithm 2. Hungarian(SLTr, 

Tg) gives the potential assignments of sensor level tracks to 

targets by minimizing the total cost. On top of that the 

proposed method applies some thresholding to validate the 

assignments. If the cost of assignment of a track to a target is 

within the threshold, then that track will be assigned to that 

target, otherwise a new target will be created. The update 

function present in the Algorithm 2 does the above work.  

Algorithm 2: Track Association Algorithm  

Input: Passive bearing line tracks and multiple frequency line 

tracks of various sensor arrays. 

Output: Targets level tracks formed by associating the 

passive bearing line tracks and multiple frequency line tracks. 

Send feedback to passive bearing line trackers.                        

1: trackToTargetAssociation() do 

2:      for each SLTr in setSLTr do 

3:           Apply Hungarian (SLTr, Tg’) 
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4:           Update (Tg’) 

5:      end for 

6:      return Tg’ 

7: end function 

8:  

9: Tg = trackToTargetAssociation() 

10: for each target j in Tg do 

11:      for each track i in Tgj.passive do 

12:           if ( (( SLTrij.b, Tgj.freqBearing) > ₸ ) then 

13:                actualBearing=Tgj.freqBearing 

14:                SendFeedback(SLTri.tracker, actualBearing) 

15:           end if 

16:     end for 

17: end for 

III. RESULTS AND DISCUSSIONS 

Simulations results for showing the performance of the 
proposed method is depicted in this section. The tracker 
subsystems for passive bearing line tracking taken for the 
simulation study, work based on the energy detection. The 
tracker subsystems are modified to incorporate the feedback 
from the track association subsystem. The passive bearing line 
tracking is tested in conditions with and without feedback from 
track association system. MFLT tracks are also assigned 
during the simulation scenario, by holding the assumption that 
each target is having at least one frequency which differentiate 
that target from another one. Five scenarios have been 
simulated and tested. First four scenarios, whose results are 
shown in Fig. 1-4 are tested with passive bearing line tracking 
method based on energy detection performs in a specified 
bearing window and the fifth scenario, depicted in Fig. 5 is 
tested with passive bearing line tracking based on Kalman 
filter. The first four scenarios consist of two moving targets 
crossing each other with fast and slow speeds, and a moving 
target crossing a stationary target with fast and slow speed. 
Each simulation is carried out N number of times, where N=50. 
Each simulation consists of M number of observations. Root 
Mean Square Error (RMSE) in kth observation is calculated as 

in (10),  

     RMSEk = �1/2�3∑ ��ₖ −  ỹₖⁱ89:� �2 ,   � ∈ [1, >]   (10) 

Where yk is the true value and ỹₖⁱ  represents observed 

value in the kth observation in ith simulation trial. In Fig. 1 

target starts crossing around 400th seconds, in Fig.2 it is 

around 600th seconds, similarly for Fig. 3 and Fig. 4 it is 

around 400th and 600th seconds respectively. In all the 

simulated scenarios it is observed that the error in the case of 

passive bearing line track is less when it incorporates feedback 

from the track association system. In MFLT the two targets 

are separated in the bearing vs. frequency space during entire 

analysis. Association system uses that information to provide 

feedback to passive bearing line trackers. Once the trackers 

start using the information provided by the association system 

it is getting closer to actual path of the target. 

 

Fig. 1. Bearing RMSE plot showing for a scenario in which two fast moving 

targets crossing each other. 

 

Fig. 2. Bearing RMSE plot showing for a scenario in which two slow 
moving targets crossing each other. 

 

Fig. 3. Bearing RMSE plot showing for a scenario in which a fast moving 

target crossing a stationary target. 

 

Fig. 4. Bearing RMSE plot showing for a scenario in which a slow moving 

target crossing a stationary target. 

When the targets are spaced closely in terms of bearing for 

a long period of time, then the passive bearing line tracking 

which is based purely on bearing will fail most of the time. A 
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scenario depicting the above case is given in Fig. 5. T1 and T2 

represents two targets and V1 represents own ship. Own ship 

is stationary in the above scenario, curved lines indicate the 

trajectories of the targets, both targets are moving away from 

the own ship. In the given scenario both of the targets are 

closely spaced in terms of bearing for a long period of time 

from the perspective of own ship. The passive bearing line 

tracking considered for the above scenario in Fig. 5 consists 

of Kalman filter having bearing and bearing rate in the state 

vector. The simulation result showing the passive bearing line 

tracking with and without feedback from track association 

system is shown in Fig. 6. From the Fig. 6 it is observed that 

error is less when the system incorporates feedback from the 

track association system.  

From the simulation results it can be concluded that with 

the feedback information from the track association system 

the performance of passive bearing line track is improved and 

its operation becomes robust and seamless. When targets are 

crossing fast and when they are spaced closely for a small 

amount of time, passive bearing line tracking based on models 

like Kalman filter can function reasonably. But when targets 

take considerable amount of time for crossing or when they 

are spaced closely for a long period of time then an algorithm 

like the proposed method is essential. So, for attaining a 

reasonable performance in underwater passive target tracking 

an algorithm like the proposed method is essential, especially 

in the field of anti-submarine warfare. 

 

Fig. 5. Scenario showing closely spaced targets for a long period of time 

from the perspective of own ship. 

 

Fig. 6. Bearing RMSE plot showing for the scenario having closely spaced 

targets for a long period of time. 

IV. CONCLUSION 

Underwater passive target tracking with feedback from an 
association system and a newly developed MFLT is proposed 
in this paper. The passive bearing line tracking with and 
without feedback from the association system is discussed in 
detail and simulation studies have been performed. The 
simulation results show that, with feedback from the 
association system performance of passive bearing line 
tracking improves and it becomes robust and it’s functions 
become seamless. Improved performance of passive bearing 
line tracking enhances overall performance of the association 
system as well as many other systems like underwater target 
classification system. The proposed method  offers robustness 
to the passive sonar target tracking with less manual 
intervention, which is essential in the areas of anti-submarine 
warfare. 
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Abstract—Segmentation plays a vital role in the Side Scan
Sonar data processing as it leads to the identification and
separation of different objects, features, or areas within the
sonar data that have different characteristics or properties. This
can make the data more interpretable and easier to analyze,
and it can also improve the accuracy of object detection and
classification. The Cell-Averaging Constant False Alarm Rate
(CA-CFAR) algorithm and its variations are one of the most
widely used techniques in processing SSS data. Accumulated
CA-CFAR is a modification of the CA-CFAR algorithm proposed
recently to improve computational efficiency, making it attractive
for real-time SSS applications. We analyse the ACA-CFAR
algorithm and propose various modifications to further improve
the computational speed, without compromising on accuracy.
The performance comparison experiments on different acoustic
images show the computational advantage of the proposed
method.

Index Terms—Side Scan Sonar (SSS), CA-CFAR, ACA-CFAR,
acoustic image segmentation.

I. INTRODUCTION

Side Scan Sonar (SSS) is commonly used in various ap-
plications such as marine surveys, search, and recovery to
locate and identify sunken vessels or other underwater objects,
environmental monitoring, and coastal zone management [2].
SSS is also widely used in military and defence applications
to detect and locate underwater mines and other objects that
may pose a threat to naval operations.

High-resolution side scan images are characterized by vi-
sually distinct areas corresponding to objects on the seabed,
shadows, and background. The objects on the seabed are seen
as high-intensity, textured areas caused by the reflection of the
acoustic wave. It is also known as a highlight. The shadows
are seen as low-intensity, textured areas caused by the lack
of acoustic reverberation from areas surrounding the objects.
The background is seen as having distinct areas with strong
textured characteristics.

Due to the nature of the environment, which causes er-
roneous shadows, multi-path returns, and side-lobe effects,
object detection in sonar images is a challenging task [3].
The technique of classifying image pixels into different groups
is known as image segmentation. The same labels are given
to the pixels that belong to the same homogeneous regions.
Segmentation is the common method used for separating the
highlight, shadow, and background regions. This is due to
the fact that pixels that represent objects have values that

are greater than the average pixel intensity in the image,
and pixels that represent shadows created by objects have
lower values. Choosing thresholds in pixel intensities to dif-
ferentiate background, highlight, and shadow regions is the
most direct method of segmenting the image. Segmentation
is a popular and important pre-processing step in SSS data
processing, as it allows for identifying and separating different
objects, features, or areas within the sonar data with different
characteristics or properties. This can make the data more
interpretable and easier to analyze, and it can also improve the
accuracy of object detection and classification. High-frequency
SSS devices (typically 100-500 kHz) generate images with
high resolution. In the case of real-time applications, the
segmentation needs to be completed within the stipulated time.

Different techniques have been proposed in the literature for
segmentation in SSS which includes thresholding, clustering,
edge detection, morphological operations, watershed algo-
rithms, level sets, and machine learning algorithms. Thresh-
olding methods are commonly used for segmentation in SSS,
which involves setting a threshold value, that separates the
data into two or more segments depending on the threshold.
CA-CFAR (Cell-Averaging Constant False Alarm Rate) is one
of the most popular algorithms used for Segmentation. A
computationally efficient modification of the CA CFAR algo-
rithm viz. Accumulated CA-CFAR (ACA-CFAR) was recently
proposed in the literature [1]. In this work, we propose a
couple of improvements in ACA-CFAR to further improve the
computational speed, without compromising accuracy.

II. BACKGROUND: CA-CFAR

CFAR (Constant False Alarm Rate) [4] is an algorithm used
in radar systems for detecting targets in the presence of noise
and clutter. It works by setting a threshold for detection that
is adjusted based on the local noise and clutter level in order
to maintain a constant false alarm rate. A false alarm is an
erroneous radar target detection decision caused by noise or
other interfering signals exceeding the detection threshold.
This false alarm can be reduced by implementing a CFAR
algorithm that maintains the false alarm probability constant
such that the threshold value for each cell is updated in
accordance with the estimated noise variance. This is achieved
by estimating the average of the interference power values
of the adjacent n cells, using which an adaptive detection
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threshold is adjusted and the probability of a false alarm
(α) is maintained. This ensures that contextual information
is used in the detection process. This method is known as
cell averaging-constant false alarm rate (CA-CFAR) [5]. CA-
CFAR is used in sonar applications to detect targets in the
presence of reverberation.

CA-CFAR is an adaptive technique that can effectively
handle the varying signal characteristics encountered in side-
scan sonar data by adapting the threshold based on the
expected signal strengths for highlight and shadow regions.
The detection task is facilitated by these abrupt variations.
[1] proposed a computationally efficient variation of the CA-
CFAR algorithm for sonar images. The algorithm segments the
image into the acoustical highlight and seafloor reverberation
areas. Without losing robustness, the method optimizes com-
putational resources. The major highlight of their work is the
simplicity of the algorithm. To reduce the computational cost,
they introduced an accumulated matrix A. The work was a 2-D
extension of CA-CFAR, so the method is named accumulated
cell averaging-constant false alarm rate in 2-D (ACA-CFAR
2-D). Our work is an extension of ACA-CFAR 2-D with a
number of enhancements to further improve computational
performance. The ACA-CFAR algorithm is discussed in the
next section.

III. ACCUMULATED CA-CFAR IN 2D

It may be noted that the CA-CFAR algorithm discussed
in the previous section is computationally very expensive. It
analyses the acoustic intensity in each cell under test (CUT)
and estimates the threshold to detect the presence or absence
of a target in the cell. The detection threshold T̂ for each CUT
is computed as,

T̂ =
r

Nc

Nc∑
i=1

xi,

where, x1, x2, . . . , xNc are the Nc neighboring cells of the
CUT, and r denotes the constant multiplier chosen either to
attenuate or enhance the detection threshold based on the
probability of false alarm (α) explained in [1]. The multiplier
r is computed as,

r = Nc(α
−1/Nc − 1) (1)

This threshold estimation requires Nc = [2(N +G) + 1]
2

memory accesses to calculate the sum of the reference cells,
and additionally Gc = (2G+ 1)

2 memory access for guard
cell computations. Here N is the width of the reference
window and G is the width of the guard window shown
in Fig.1. A typical acoustic image may contain 200-2000
samples, and 2D CA-CFAR computation demands consider-
able computational resources and time to analyse the entire
image. This requirement limits the usage of the 2D CA-CFAR
algorithm in SSS systems with real-time requirements.

To alleviate these disadvantages, a computationally im-
proved 2D CA-CFAR algorithm called the Accumulated CA-
CFAR (ACA-CFAR) algorithm was proposed in [1]. ACA-

CFAR reduces the repeated computation by pre-calculating the
summations of the reference and guard cells.

ACA-CFAR algorithm first computes an accumulation ma-
trix, A. The (r, c)th element of A is calculated as

ar,c =
r∑

i=1

c∑
j=1

xi,j (2)

A graphical representation of accumulation matrix generation
from acoustic sample data is given in Fig.3 of [1].

The computation of the threshold, T̂ , for each cell requires
the summation of the values in the reference cells and guard
cells given in Fig.1. In the reference window, the distance
from CUT to the farthest cell is the reference distance dr =
N +G. And in the guard window, the distance from CUT to
the farthest cell is the guard distance dg = G.

Fig. 1: Gerenic CFAR window 2-D [1].

Let ΣR denote the sum of the reference cells of CUT. It
may be observed that the sum of the reference cells ΣR can
be computed using only the algebraic sum of four elements
of the pre-computed accumulation matrix A as

ΣR =ar+dr,c+dr
− ar−(dr+1),c+dr

− ar+dr,c−(dr+1) + ar−(dr+1),c−(dr+1) (3)

Note that the above computation requires only four memory
accesses from the pre-computed accumulated matrix.
The guard cell computation can also be improved in a similar
way, by changing dr by dg in (3), we get

ΣG =ar+dg,c+dg
− ar−(dg+1),c+dg

− ar+dg,c−(dg+1) + ar−(dg+1),c−(dg+1) (4)

Detailed explanation for (3) and (4) is given in (17) and
(18) of [1].

IV. PROPOSED ENHANCEMENTS IN ACA-CFAR

By analysing the ACA-CFAR method and the pseudo-code
given in [1], we identified a couple of possible enhancements
to further improve the computational performance of ACA-
CFAR. The reasoning and the proposed improvements are
explained below.

A. Zero-Padding

It may be noted that (3) and (4) are valid only for the general
case in which the CUT is away from the edges of the image.
In cases where the distance d < dr for left, right, below, or
above on the CUT, [1] proposes different equations (equations
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Fig. 2: Nc matrix for an image with size 25× 30 and dr = 5.

(19), (20) and (21) in [1]) to handle these special cases. These
special cases appear as conditional branches in the Pseudocode
of ACA-CFAR 2-D (Fig. 4 in [1]). A similar branching appears
again while computing the accumulation matrix A.

Algorithm 1 ZeroPadding
Inputs: Xm×n, dr
Output: Zm+2dr+1,n+2dr+1

Z = 0m+2dr+1,n+2dr+1

Z(dr + 2 : m+ dr + 1, dr + 2 : n+ dr + 1) = Xm,n

Though modern processors use branch prediction and spec-
ulative execution to improve performance, it is well known
that removing the branches in the algorithm is the best option
to minimize the computation time.

To avoid this branching, we propose to pad an array of dr+1
zeros to the left and top, and dr zeros to the right and bottom
portions of the input image with size m×n. The zeroPadding
algorithm is given in Algorithm 1.

Now, after zero-padding, the modified algorithm needs to
execute only the general case. This avoids branching and leads
to an improvement in the speed of execution.

During accumulated sample matrix (A) creation, the general
case for the (i, j)th element is given by, ai,j = ai,j−1+ai−1,j−
ai−1,j−1 + Ii,j . The general case during the computation of
the double sum of intensities is given in (3) and (4).

B. Pre-Computing the Nc matrix

We can also observe that the number of samples Nc also
decreases and varies as the CUT approaches the edges of
the image under consideration. This demands repeated cal-
culations of Nc while computing the threshold for each CUT

cell, raising the computation requirement of the ACA-CFAR
algorithm. [1] calls the calculateSample function for every
CUT in the threshold computation step.

In [1], authors proposed to pre-compute the accumulated
sample matrix A to reduce the computation. In a similar
manner, if we pre-compute the number of samples Nc for
each CUT and store it in a matrix, we can save the in situ
computations of Nc while calculating the threshold for each
CUT cell. For each CUT in (i, j)th locations, we pre-compute
Nc and store it in the (i, j)th location of a matrix, say Nc.
Since the Nc matrix depends only on the dr, the same Nc

matrix can be re-used for all acoustic images with the same
dimension and the same dr. This property will be advanta-
geous for a typical side-scan sonar where the acoustic image
size and dr will be constant, leading to further computational
improvement in online side-scan processing applications.

Computation of Nc matrix: We observed that the Nc matrix
holds a nice structure using which we can further reduce the
computational requirements of the Nc matrix. It is explained
below.
Nc matrix contains the precomputed values of the number

of sample cells surrounded by a test cell. For an image with
size 25 × 30 and dr = 5, the Nc matrix is shown in Fig.2.
As we can observe from Fig.2, only a few elements in the
Nc matrix need to be explicitly computed, and the rest can be
copied by exploiting the structure of the matrix.

For efficient Nc matrix computation, the matrix is divided
into 9 regions viz., Top, Bottom, Left, Right, Top-Left, Top-
Right, Bottom-Left, Bottom-Right, and Center. The regions are
shown in Fig.3. It may be observed that the Top-Left portion
is a symmetric matrix, and all the sub-matrices in the corners
(Top-Left, Top-Right, Bottom-Left, Bottom-Right) are different
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Fig. 3: The nine regions of Nc Matrix
combinations of this matrix. Once we compute the elements
in the upper triangular matrix of the Top-Left matrix, we can
easily find the rest of the elements in the Top-Left matrix,
as it is a symmetric matrix. The Bottom-Left sub-matrix is
just the flip of the Top-Left sub-matrix. Similarly, the Top-
Right sub-matrix is a column-wise flip of Top-Left sub-matrix
and Bottom-Right sub-matrix can be found by flipping Top-
Right matrix row-wise. It may also be observed that the Bottom
sub-matrix is flip of Top sub-matrix, Left sub-matrix is the
transpose of Top sub-matrix, Right sub-matrix is column flip
of Left sub-matrix. The Center sub-matrix is a constant matrix
with all elements equal to (2dr + 1)2.

Algorithm 2 Modified ACA-CFAR in 2-D
Inputs: X ∈ Rm×n, N , G, α, Nc ∈ Rm×n

Output: Y ∈ Rm×n

Y ← 0m×n

Z← ZeroPadding(X) ▷ Z ∈ Rm+2dr+1,n+2dr+1

A← 0m+2dr+1,n+2dr+1

for i ← dr + 2 to m+ 2dr + 1 do
for j ← dr + 2 to n+ 2dr + 1 do

ai,j ← ai,j−1 + ai−1,j − ai−1,j−1 + zi,j
end for

end for
Bl ← am,n/(m× n)
for i← dr + 2 to m+ dr + 1 do

for j ← dr + 2 to n+ dr + 1 do
if zi,j > Bl then ▷ zi,j is (i, j)th element of Z

c← Nc(i−dr−1,j−dr−1)

r ← c× (α−1/c − 1)
ΣR ← calculateSumCells(A, i, j,N +G)
ΣG ← calculateSumCells(A, i, j, G)
T̂ ← ((ΣR − ΣG)/c)× r
if zi,j > T AND T> Bl then

y(i−dr−1,j−dr−1) ← 1 (Highlight)
else

y(i−dr−1,j−dr−1) ← 0 (Shadow)
end if

end if
end for

end for

C. Branch Optimization

By analysing the pseudo-code of the ACA-CFAR algorithm,
it may be further observed that the threshold is computed for
all CUT cells, and the cell is declared as a highlight if the value
is greater than both the computed threshold, denoted by T̂ , and
lower Boundary, denoted by Bl. The lower Boundary (Bl) of
an image is defined as the average intensity of the image. For
an image with size m× n, Bl is given by, Bl =

am,n

m×n .
For any given image, Bl is constant and shall be pre-

computed. Instead of checking the conditions x(i, j) > T̂ and
T̂ > Bl, if we check the condition x(i, j) > Bl first, then those
pixels that satisfy this condition are only required to be passed
to the threshold T̂ calculation stage. In general, there will be
numerous pixels that will be less than Bl, including the pixels
in the shadow region, for any acoustic image obtained from a
SSS. Thus, a large number of unwanted threshold calculation
steps can be eliminated using this modification.

The modified ACA-CFAR is given in Algorithm 2.

Algorithm 3 calculateSumCells
Inputs: A, r, c,K ▷ K ∈ {N +G,G}
Output: Σrc

Σrc = ar+K,c+K − ar−(K+1),c+K − ar+K,c−(K+1) +
ar−(K+1),c−(K+1)

V. EXPERIMENTS AND RESULTS

To compare the computational advantages of our proposed
modified ACA-CFAR algorithm with the ACA-CFAR algo-
rithm, we conducted experiments on different SSS data avail-
able in the SeabedObjects-KLSG–II sonar image dataset [6].
The experiments were conducted using Matlab 2022b. Our
comparison studies were performed on a PC with processor
Intel® Core™ i7-10700 CPU @ 2.90GHz, 8 cores, 16 threads,
memory 16 GB, with Ubuntu 22.04.1 LTS 64-bit OS.

We conducted the experiments in different phases so that
the results of the various improvements we suggested could be
independently analysed. The following options are analysed:

1) ACA-CFAR
2) ACA-CFAR with Zero Padding
3) ACA-CFAR with Nc Matrix
4) ACA-CFAR with Branch Optimization
5) ACA-CFAR with All the three Modifications
The measure used for performance analysis is the average

computation time. The computation time is calculated as the
elapsed time using the tic and toc functions available in
Matlab. The results are given in Table I.

For the comparison study, the performance improvement
of each modification over ACA-CFAR is considered. These
results are shown in Table II. It may be observed that
each of our modifications results in significant computation
improvements over the ACA-CFAR algorithm. For all the
images, the proposed method, Modified ACA-CFAR (ACA-
CFAR with all three modifications), took 57% less time than
ACA-CFAR. This shows the computational advantage of our
proposed method.
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Average computation time (in seconds)
Fig. N G Nc Gc Prob. false alarm ACA-CFAR ACA-CFAR ACA-CFAR ACA-CFAR Modified ACA-CFAR

(α) with Zero with Nc with Branch (with All three
Padding Matrix Optimization modifications)

4a 2 1 49 9 0.46019 0.0271 0.0250 0.0220 0.0135 0.0102
4b 3 1 81 9 0.46397 0.0114 0.0108 0.0094 0.0053 0.0045
4c 4 2 169 25 0.47412 0.0317 0.0289 0.0258 0.0152 0.0116
4d 2 1 49 9 0.45641 0.0062 0.0058 0.0050 0.0026 0.0023
4e 3 2 121 25 0.35439 0.0290 0.0263 0.0232 0.0163 0.0123

TABLE I: Comparison of average computation time between ACA-CFAR and Modifications of ACA-CFAR

(a) airplane (b) ship (c) ship (d) ship (e) airplane

Fig. 4: Results of Modified ACA-CFAR

Performance improvement in %
ACA-CFAR ACA-CFAR ACA-CFAR Moddified

Fig. with Zero with Nc with Branch ACA-CFAR
Padding Matrix Optimization (Algorithm 2)

4a 7.4510 18.5277 50.1214 62.2269
4b 5.1762 17.3903 53.5297 60.0680
4c 8.8587 18.5906 52.0281 63.4931
4d 7.5041 19.9137 58.0055 63.7565
4e 9.2643 19.9546 43.9394 57.7761

TABLE II: Computational improvements (in %) of the pro-
posed modifications of ACA-CFAR compared to ACA-CFAR

The segmentation results of the experiment are shown in
Fig. 4. Here, the first row shows the input images and the
second row shows the output segmented images. It may be
noted that the ACA-CFAR algorithm and our modified ACA-
CFAR algorithm give the same output in terms of segmen-
tation. However, our proposed algorithm gives over 57%
improvement in computation time, making it more attractive
for real-time segmentation applications in SSS.

VI. CONCLUSIONS

Segmentation in SSS data is a vital task in the automatic
detection and classification of underwater objects as it divides
the data into smaller, meaningful segments or regions. CA-
CFAR algorithm is an efficient algorithm used widely for
segmentation tasks. However, the 2D version of the algorithm
is computationally very expensive and a computationally im-
proved version viz. ACA-CFAR was proposed in [1]. We pro-
posed enhancements to the ACA-CFAR algorithm to improve

computational efficiency further. The computational advantage
of the proposed algorithm is shown using real-world sonar
images available in public datasets. The experiments showed
a significant improvement (more than 57%) in the computation
time over the ACA-CFAR algorithm. Hence, the proposed
algorithm is more attractive and suitable for a real-time SSS
system.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Ajithkumar K., Director,
NPOL, Mrs. Manjula Rani P., Group Director (ES), and
Mrs. Rani Gopakumar, Division Head (IP), for their support
during the work.

REFERENCES

[1] Acosta, G.G, Sebastian A. Villar, “Accumulated CA–CFAR Process in
2-D for Online Object Detection From Sidescan Sonar Data,” IEEE J.
Ocean. Eng., July 2015, 40, 558–569.

[2] T. Celik and T. Tjahjadi, “A Novel Method for Sidescan Sonar Image
Segmentation,” IEEE J. Ocean. Eng., vol. 36, no. 2, pp. 186–194, Apr.
2011.

[3] Reed, S.; Petillot, Y.; Bell, J. “An automatic approach to the detection
and extraction of mine features in sidescan sonar,” IEEE J. Ocean. Eng.,
2003, 28, 90–105.

[4] D. K. Barton and S. A. Leonov, Radar Technology Encyclopedia.
Reading, MA, USA: Artech House, 1998, pp. 91–93.

[5] M. A. Richards, Fundamental of Radar Signal Processing. New York,
NY, USA: McGraw-Hill, 2005, ch. VI and VII.

[6] Huo, G.; Wu, Z.; Li, J., “Underwater Object Classification in Sidescan
Sonar Images Using Deep Transfer Learning and Semisynthetic Training
Data”, IEEE Access 2020, 8, 47407–47418

40



Multi-Target Tracking Using a Swarm of UAVs by
Q-learning Algorithm

Seyed Ahmad Soleymani1, Shidrokh Goudarzi2, Xingchi Liu3,
Lyudmila Mihaylova3, Wenwu Wang1, and Pei Xiao4

1Centre for Vision Speech and Signal Processing (CVSSP), The University of Surrey, UK
2School of Computing and Engineering, University of West London, UK

3Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
4Institute for Communication Systems (5GIC), The University of Surrey, UK

Abstract—This paper proposes a scheme for multiple un-
manned aerial vehicles (UAVs) to track multiple targets in
challenging 3-D environments while avoiding obstacle collisions.
The scheme relies on Received-Signal-Strength-Indicator (RSSI)
measurements to estimate and track target positions and uses a
Q-Learning (QL) algorithm to enhance the intelligence of UAVs
for autonomous navigation and obstacle avoidance. Considering
the limitation of UAVs in their power and computing capacity, a
global reward function is used to determine the optimal actions
for the joint control of energy consumption, computation time,
and tracking accuracy. Extensive simulations demonstrate the
effectiveness of the proposed scheme, achieving accurate and
efficient target tracking with low energy consumption.

Index Terms—Multi-target tracking, UAV, Q-Learning, Edge
Computing.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as a
highly promising platform for target tracking systems, primar-
ily owing to their exceptional mobility, adaptable deployment
capabilities, and cost-effectiveness [1]. The versatility of UAVs
lies in their ability to cover vast areas across different altitudes
and locations, while also offering superior Line-of-Sight (LoS)
links compared to ground Base Stations (BSs), courtesy of
their elevated altitude. Consequently, UAVs stand as an ideal
choice for target tracking applications. Especially in challeng-
ing scenarios where ground service agents are unavailable,
UAVs play a pivotal role, diligently and precisely tracking
targets [2].

However, limited communication range, battery capacity,
and computing capacity are the main challenges of UAVs in a
target tracking system. To deal with these challenges, a swarm
of autonomous UAVs can be effective. A swarm of UAVs can
be used to ensure effective communication coverage in the
long term. The utilization of Edge Computing (EC) is also a
promising solution to tackle the challenges faced by UAVs.
For example, by leveraging the computational capacity of the
edge, compute-intensive operations of UAVs can be offloaded
to Edge Nodes (ENs) and as a result, enhance both computing
quality and the lifetime of the UAVs network [3], [4]. As
shown in [5], UAV-enabled EC has been conceptualized as
a viable option to enhance the target tracking process.

In recent years, UAV-aided target detection and tracking
has been studied. In [6], a Deep Q-Network (DQN) was
constructed, with a finite action space, to deal with the limited
field of view (FOV) of the camera equipped on the UAV,
where a reward function was designed to take into account
whether a target is within the FOV. In [7], authors introduced
a motion planning algorithm based on the unscented Kalman
filter (UKF) for UAVs to estimate the state of the target.
The motion planner determines the UAV trajectory, which
includes acceleration and turn rate. In [8], a reinforcement
learning (RL) technique is used to train a swarm of UAVs
to determine the optimal routes that maximize the probability
of observing the targets. Existing works on target tracking
employed different technologies and methods. However, it is
still an open research problem. According to [9], mobile target
tracking is a challenging problem due to the uncontrollable
motion of the target, making the task even more complicated.

In this work, we focus on addressing the challenge of
controlling multiple UAVs to track multiple targets, with the
constraints of communication and computing resources of
UAVs. To this end, we present a new approach where RSSI
is used, due to its low cost and power consumption, hardware
simplicity, and the ability to use simple receivers. More specif-
ically, a Q-learning-based algorithm for UAV control action
selection is proposed, along with a novel reward function that
encourages UAVs to learn an optimal policy for improved
tracking with maximum expected cumulative reward while
considering accuracy, latency, and energy consumption. The
key contributions of the paper are as follows:

1- We present a scheme using the QL algorithm that controls
multiple UAVs in 3-D environments to achieve optimal
tracking of multiple targets.

2- We develop an efficiency-maximizing reward function
that accounts for joint optimization of accuracy, delay,
energy consumption, and obstacle avoidance.

The paper is organized as follows: Section II presents the
system model, Section III explains the proposed scheme,
Section IV analyzes the scheme through simulations, and
Section V provides concluding remarks.
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Fig. 1. Network Model.

II. SYSTEM MODEL

In this section, we discuss the target and UAV trajectory
models along with the channel model between UAVs and the
target, for the scenario shown in Fig. 1, which includes the
targets, ENs, and UAVs equipped with RSS sensors.

A. Target Trajectory Model

In the system, there are M targets that have mobility
on the ground. Each target has a start point (xs

m, ysm) and
endpoint (xe

m, yem), where m = 1, · · · ,M . Each target
chooses a path between these two points for its movement
by considering obstacle avoidance. The initial location of
m-th Radio Frequency (RF) target is fixed at postarm =
[xtar

m (0) = xs
m, ytarm (0) = ysm] and the time-varying location

of target is denoted as postarm (t) = [xtar
m (t), ytarm (t)] at time

t. Here, the target movement velocity is defined as vtarm (t) =[
vtarx,m(t), vtary,m(t)

]
.

B. UAV Trajectory Model

In this system, there exists N UAVs in which each
UAV flies at different altitudes. We assume that the ini-
tial location of the UAV at time t = 0 is posuavn (0) =
[xuav

n (0), yuavn (0), zuavn (0)], where n = 1, · · · , N . The time-
varying location of the n-th UAV at time t is denoted as
posuavn (t) = [xuav

n (t), yuavn (t), zuavn (t)] and flight velocity of
UAV is defined as vuavn (t) =

[
vuavx,n (t), vuavy,n (t), vuavz,n (t)

]
. Let

posuavn (t) be the coordinate of the n-th UAV at time t. Hence,
the sequence of points Ln = {posuavn (0), · · · , posuavn (Tn)}
can be used to express the trajectory of the n-th UAV where
Tn is the total time that n-th UAV flies during its trajectory,
which depends on the trajectory length and velocity of the
UAV, and can be obtained as follows [10]:

Tn =
T−1∑
t=0

∥posuavn (t+ 1)− posuavn (t)∥
vuavn (t+ 1)

(1)

C. Channel Model

The received power captured by the RSS sensor mounted
on the n-th UAV at time t can be mathematically expressed
as [11]:

rssiuavn (t) = PTX − PLn(t)− ρn, (2)

here, PTX represents the constant transmit power of the RF
target, while PLn(t) denotes the path loss between the n-th
UAV and the target at time t. ρn is an exponential random
variable with a unit mean incorporating the effect of Rayleigh
fading. The RSS measurements in each UAV can be denoted
by RSSIn = [rssiuavn (0), · · · , rssiuavn (Tn)].

III. DESIGN OF MULTI-TARGET TRACKING BY
MULTI-UAV BASED ON Q-LEARNING AND

MULTILATERATION

In this section, we outline our scheme for the multi-target
tracking problem. In this work, Q-learning, normalization, and
multilateration form the core of our scheme.

A. Q-Learning

The Q-learning algorithm is a value-based Reinforcement
Learning (RL) technique that is specifically designed for
deterministic policies. In RL algorithms, the primary goal is to
identify the optimal policy π∗ that maximizes the cumulative
reward over the long term. During each time slot, the QL
algorithm determines an action to be performed by the UAV.
Upon taking an action a, the UAV receives a reward r (s, a)
and transitions to a new state s′. Following each decision, the
Q-value of the state-action pair is updated as:

Q (s, a)← (1− α)Q (s, a) + α

[
r (s, a) + γ max

a′∈A
Q (s′, a′)

]
(3)

where γ ∈ (0, 1] is a discount factor that determines the impor-
tance of future rewards, and α is the learning rate that controls
the extent to which new information overrides old information.
The optimal policy can be learned through interactions with
the environment and recording the corresponding experiences
(s, a, r, s′).

B. Multilateration

Multilateration is the process of determining the unknown
position coordinates of a point of interest. In target tracking,
using multilateration method for locating the m-th target with
position postarm , the distance from rm,n to n-th UAV with
position posuavn is given as

rm,n =

√
(xtar

m − xuav
n )

2
+ (ytarm − yuavn )

2 (4)

C. Multi Target Tracking Using a Swarm of UAVs

In this work, a swarm of UAVs was considered to track each
target. Once the position of the detected target is estimated,
the edge node (EN) selects a swarm of nearby UAVs to
track the target. These UAVs form a cluster consisting of
a Cluster Head (CH) and other UAVs that are directly and
wirelessly connected to the CH. Since each UAV is limited
by its battery capacity, the EN selects a UAV with the highest
battery capacity as the CH. It is worth noting that the number
of UAVs in each cluster should be at least two.

Since the Q-learning algorithm utilized in UAVs is a state-
action algorithm, we considered some allowable control ac-
tions for UAVs that can be taken at each state. In this work,
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the number of actions is equal to η = 8. These actions
denote the flight direction along the x, y, and z-axis. UAVs
determine the flight direction by choosing one action from
discrete action space AS = {a1, a2, · · · , aη}. We assumed
that UAVs have only horizontal movement, hence, the UAV
dynamics are formulated as follows:

posuavn (t) = posuavn (t− 1) +

 d ∗ cos(θi)
d ∗ sin(θi)
zuavn (t− 1)

 (5)

where d is the velocity of the target at time t, θi = i ∗ 2π
|AS|

for i ∈ [1, η].
The Q-learning algorithm considers three parameters,

namely accuracy, delay, and energy, to optimize the target
tracking performance of UAVs. To account for these param-
eters, we designed a reward function that aims to minimize
energy and delay while maximizing accuracy. Thus, the reward
function can be expressed as follows:

reward = w1 ∗ (1− E∗) + w2 ∗ (1−D∗) + w3 ∗A∗ (6)

The weights assigned to energy, delay, and accuracy are
denoted by w1, w2, and w3, respectively. The normalized
values of consumed energy, delay, and accuracy, obtained
through Min-Max normalization [12], are represented by E∗,
D∗, and A∗, respectively.

In this work, the energy consumption of UAVs E is deter-
mined by the energy consumed during flight of UAV Eflight

as follows [13]:
E = Eflight (7)

where

Eflight = (Wuav × g × dist) + (Fp × vuavn × dist) (8)

Here, Eflight be the total energy consumption during flight
(in joules), Wuav be the weight of the UAV (in kilograms),
g = 9.81m/s2 is the acceleration due to gravity, dist be
the total distance traveled during the flight (in meters), Fp

be the average propulsion force required to maintain flight
(in newtons), vuavn be the average flight speed (in meters per
second).

The delay between the target and UAV is directly propor-
tional to the time taken for the signal to propagate between
them. Hence, we can express the delay D as a function of
propagation time Dprop as follows:

D = Dprop (9)

where Dprop = Distance/Speed, (Speed = 3 × 108m/s)
As the distance between the target and UAV increases, the
propagation time also increases, leading to an increase in the
overall delay.

To compute accuracy A, the distance between UAV and the
target is considered as follows:

A = distmn =
∥∥posuavn − postarm

∥∥ (10)

where ∥.∥ is the Euclidean distance.

The parameters E, D, and A are measured and then
subjected to Min-Max normalization to accommodate their
different ranges of values and units. The normalized values are
denoted as E∗, D∗, and A∗ in the output. Additionally, since
accuracy is considered more important than energy consump-
tion and delay, we assigned it a higher weight. Specifically,
we set w1 = 1

4 , w2 = 1
4 , and w3 = 1

2 .
In each state, every UAV selects the optimal action from

a set of η possible actions (i.e., flight directions) using the
Q-learning algorithm and leveraging the reward function. To
achieve the final objective, avoiding obstacle collisions, we
assign a reward value of reward = 0 to each action where the
probability of obstacle collision is high. Then, UAV measures
the RSSI from the power level of a received signal of the
target m. The RSSI rssiuavn (t) measured by UAV n as well
as current position posuavn (t) of UAV available in the cluster
will be sent to the CH. Next, CH executes the Multilateration
function and estimates the position of the target m. Finally,
CH sends the estimated position to all UAVs in the cluster.
Once UAVs receive the position of the target, UAVs run the
Q-learning algorithm for selecting the next state. This process
will be repeated until the target (e.g. m) reaches the endpoint
(e.g. (xe

m, yem)). Fig. 2 represents the process of target position
estimation as well as target tracking by our scheme. This figure
also shows the process of data communication between a UAV
and a CH.

As mentioned above, each UAV is limited by its battery
capacity. The energy consumption of each UAV is affected
by several factors such as weight, aerodynamics, flight speed
and altitude, and environmental conditions. Computation, com-
munication, and task complexity also contribute to power
consumption. The UAV’s onboard computing system includes
a processor, memory, and other components that consume
energy. The processing load is primarily determined by the
task complexity, dataset size, and algorithm used. Communi-
cation between UAVs and ground stations requires the use of
communication systems, such as radios or transceivers, which
also consume energy. The energy consumption of the commu-
nication system depends on the amount of data transmitted or
received, the distance, and the quality of the communication
link. Higher data rates or longer distances typically require
higher transmit powers, leading to higher energy consumption.

To address this issue, we established two threshold values
for the battery power of UAVs. These thresholds are utilized
to monitor the state of the battery during the UAV’s flight.
By setting these threshold values, we can ensure that the
UAV operates within a predetermined energy budget, which
not only prolongs its flight time and range but also enhances
its reliability and lowers the likelihood of battery depletion
during a mission. Whenever the battery power of a UAV,
such as UAVn, falls below the first threshold value, it sends
a warning message to the nearby EN to report its status. It
also stops measuring RSSI and sends a request message to
CH asking for the target’s position until its battery power is
sufficient for target tracking. Concurrently, the EN attempts
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UAV (𝐔𝐀𝐕𝐧) Cluster Head (𝐔𝐀𝐕𝐂𝐇)

1- Run Q-learning 1- Run Q-learning

2- Choose the best next state     𝐏𝐨𝐬𝐧
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𝐮𝐚𝐯
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signal from the target  𝐫𝐬𝐬𝐢𝐧

4- Measure the RSSI from the power level of a received 

signal from the target  𝐫𝐬𝐬𝐢𝐂𝐇

5- Send current position 𝐏𝐨𝐬𝐧
𝐮𝐚𝐯 and 𝐫𝐬𝐬𝐢𝐧 to 𝐔𝐀𝐕𝐂𝐇

𝐏𝐨𝐬𝐧
𝐮𝐚𝐯, 𝐫𝐬𝐬𝐢𝐧

5- Run Multilateration function 
({𝐏𝐨𝐬𝐢

𝐮𝐚𝐯 𝐚𝐧𝐝 𝒓𝒔𝒔𝒊𝐢 𝐟𝐨𝐫 𝐀𝐥𝐥 𝐢 𝐢𝐧 𝐭𝐡𝐞 𝐂𝐥𝐮𝐬𝐭𝐞𝐫}, 𝐏𝐨𝐬𝐂𝐇
𝐮𝐚𝐯, 𝒓𝒔𝒔𝒊𝑪𝑯 )

6- Send the output (𝐏𝐨𝐬𝐦
𝐭𝐚𝐫) to 𝐔𝐀𝐕𝐧

𝐏𝐨𝐬𝐦
𝐭𝐚𝐫

6- Go to Step 1 7- Go to Step 1

Fig. 2. The process of data communication between UAV and CH.

UAV (𝐔𝐀𝐕𝐧) Cluster Head (𝐔𝐀𝐕𝐂𝐇)

1- If the power of battery < Thrsld_1

2- Send a warning message to EN

3- Turn off unnecessary functions

4- Send a request message to cluster head

𝑷𝒐𝒔𝐧
𝐮𝐚𝐯, 𝑹𝒆𝒒𝐧

5- Run the Multilateration function 

6- Send the output (𝐏𝐨𝐬𝐦
𝐭𝐚𝐫) to 𝐔𝐀𝐕𝐧

𝐏𝐨𝐬𝐦
𝐭𝐚𝐫

6- If the power of battery < Thrsld_2

7- Send an error message to EN and cluster head

8- Run the Landing function

Fig. 3. The process of UAV battery power monitoring.

to find a replacement UAV to swap with UAVn. If UAVn’s
battery power falls below the second threshold value, it sends
an error message to the nearby EN and CH, and then initiates
the landing function. This process is illustrated in Fig. 3.

IV. NUMERICAL RESULTS

This section presents the numerical results of our scheme,
specifically tracking accuracy and energy consumption. MAT-
LAB was used as the simulation platform, and an obstacle-
filled environment was created using a matrix with cylinders
and cones representing the obstacles. The simulation involved
five UAVs tracking two targets in this environment. Here, the
tracking of target 1 is performed by three UAVs, namely
{UAV1, UAV2, UAV3}, while target 2 is tracked by two
UAVs, namely {UAV4, UAV5}. We also included three edge
nodes (ENs) in the simulation. Each UAV is capable of
communicating with an EN that is within its communication
range. In order to assess the effectiveness of our scheme, we
established three separate scenarios, outlined as follows:

• Cluster 1: In this scenario, three UAVs are organized into
a cluster, and a single UAV is designated as the cluster
head (CH). The two remaining UAVs communicate with
the CH and nearby EN and do not directly communicate
with each other.

• Cluster 2: In this scenario, two UAVs are grouped into
a cluster, and one UAV is elected as a cluster head (CH).

Another UAV is able to communicate with CH and nearby
ENs.

• Non-Clustered: In this scenario, there is no clustering
of UAVs. Instead, three individual UAVs are assigned to
track a target and are able to communicate with each
other as well as nearby ENs.

The initial positions of each UAV and target were defined
as previously explained. Target 1 has a starting position of
postar1 (0) = [2, 1] meters, while target 2 has a starting position
of postar2 (0) = [1, 6] meters. Both targets have a designated
endpoint of [30, 15] meters. To move toward the endpoint
while avoiding obstacles, each target randomly selects a path
between its start point and the endpoint. Additionally, we have
defined the initial positions of five UAVs as posuav1 (0) =
[1, 2, 2.5], posuav2 (0) = [3, 4.5, 3], posuav3 (0) = [6, 1, 2],
posuav4 (0) = [4.5, 6, 3], and posuav5 (0) = [2, 10, 4] meters.
Each target is initially assigned a velocity, and their velocities
can vary from 1m/s to 5m/s during their movement along
the trajectory. The UAVs adjust their velocity during target
tracking based on the velocity of the target. Here, we assume
that each UAV will receive information about obstacles from
nearby ENs to avoid the collision. The information includes
the dimensions of the obstacles such as length, width, height,
diameter, and other relevant details.

The root means square error (RMSE) can be an effective
metric for assessing the accuracy of the scheme’s performance
[14]. To this end, we consider the actual position of the target
and the estimated position of the target by the UAVs. For
all positions that the target passed during its trajectory, we
measured the RMSE. We carried out this procedure for each
of the aforementioned scenarios individually. The RMSE was
computed using the following equation:

RMSE =

√∑K
i=1(x

tar
i − x̂i

tar)2 + (ytari − ŷi
tar)2

K
(11)

where K is the number of positions that the target passed
during its trajectory, and [xtar

i , ytari ] and
[
x̂i

tar, ŷi
tar

]
rep-

resent the actual and estimated positions of the target at the
i-th position, respectively. Fig. 4 presents a comparison of
the RMSE for each scenario. It is observed that the accuracy
of the proposed scheme in scenario 1 is superior to those in
other scenarios. This can be attributed to the higher number
of UAVs present in scenario 1, as compared to scenario 2 in
cluster-based scenarios. In real-time applications like target-
tracking, both the computation and communication delay have
a significant impact on application performance accuracy.
The reduced number of connections and communications for
sending/receiving information between UAVs in scenario 1
compared to scenario 3 leads to higher accuracy in the former.

We conducted experiments to measure the total energy
consumption by each UAV during the target tracking process.
The results, as shown in Fig. 5, indicate that the energy
consumed by UAVs in the cluster-based scenario is less than
that in the non-clustered scenario. This is due to the reduced
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Fig. 4. Comparison of measured RMSE in each
scenario

Fig. 5. Comparison of total energy consumption by
each UAV in clustered and non-clustered scenarios

Fig. 6. Comparison of our scheme with CLRB-
based scheme over 100 Monte Carlo experiments.

communication and computation requirements in the cluster-
based scenario.

In addition, we conduct a comparative analysis of our
scheme with a Cramér–Rao Lower Bound (CRLB) based
scheme proposed in [15] over 100 Monte Carlo experiments.
The CRLB is a fundamental concept used in target tracking
to estimate the accuracy of any unbiased estimator. It serves
as a benchmark for assessing the quality of target tracking
algorithms. The comparison focuses on assessing the perfor-
mance in terms of Root Mean Squared Error (RMSE). For our
scheme, we evaluate its performance under the first scenario
with different numbers of allowable control actions (η = 8 and
12). As depicted in Fig. 6, the QL-based control demonstrates
tracking performance comparable to the CRLB-based control,
which is considered the optimal control scheme.

V. CONCLUSION

In this study, a scheme based on RSSI has been proposed
for tracking multiple targets using multiple UAVs. The QL
algorithm and Multilateration are the core of the proposed
scheme. Due to the limitation of power capacity and the
computing capacity of UAVs and in addition, the importance
of delay in the target tracking, energy consumption, delay, and
accuracy have been considered as three main parameters in the
reward function of the QL algorithm. We have analyzed our
scheme in cluster-based and non-cluster-based scenarios. The
obtained results showed that our scheme based on clustering
has provided a more accurate and efficient target-tracking
solution with lower energy.
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Abstract—To extend the singular value decomposition (SVD)
to matrices of polynomials, an existing algorithm — a poly-
nomial version of the Kogbetliantz SVD — iteratively targets
the largest off-diagonal elements, and eliminates these through
delay and Givens operations. In this paper, we perform a
complete diagonalisation of the matrix component that contains
this maximum element, thereby transfering more off-diagonal
energy per iteration step. This approach is motivated by —
and represents a generalisation of — the sequential matrix
diagonalisation (SMD) method for parahermitian matrices. In
simulations, we demonstrate the benefit of this generalised SMD
over the Kogbetliantz approach, both in terms of diagonalisation
and the order of the extracted factors.

I. INTRODUCTION

The singular value decomposition (SVD) is a standard
linear algebraic tool for the diagonalisation of a rectangular
matrix [1]. It has proven central in signal processing to provide
solutions to many different challenges [2]. Often solutions
can be optimal in various respects; for example for such
as for precoding and equalisation for the diagonalisation of
multiple-input multiple-output (MIMO) channels [3], where
the SVD leads to optimality in least squares and channel
capactiy senses. Such matrices typically describe narrowband
systems.

In the broadband case, where impulse responses rather
than complex-valued gain factors between sources and sensors
have to be considered, a multiple-input multiple-output system
created by N transmitters and M receivers becomes a matrix
of transfer functions. For example, the system A(z) : C →
CM×N ,

A(z) =

 a1,1(z) . . . a1,N (z)
...

. . .
...

aM,1(z) . . . aM,N (z)

 , (1)

contains in its mth row and nth column the z-
transform am,n(z) =

∑
τ am,n[τ ]z

−τ , or for short
am,n(z) • ◦ am,n[τ ], where am,n[τ ] is the impulse response
between the nth transmitter and the mth receiver. If these
impulse responses are finite and causal, then A(z) in (1) is
a polynomial matrix. For such matrices, the standard SVD
can diagonalise (1) for only one specific value of z, or
equivalently A[τ ] for one one value of τ .

The work of Faizan Khattak is supported by a Commonwealth Scholarship.
This work was also in part supported by the Engineering and Physical
Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the
MOD University Defence Research Collaboration in Signal Processing.

Therefore a different SVD factorisation is required for
(1), that can simulaneously diagonalise A(z) for all z, or
equivalently A[τ ] for all τ , such that

A(z) ≈ U(z)Σ(z)V P(z) . (2)

The approximation sign is due to the potential truncation of
infinite series and other effects that we will briefly review
in Sec. II. Decompositions such as (2) have in the past
been realised via two polynomial eigenvalue decompositions
(PEVDs) applied to two parahermitian matrices A(z)AP(z)
and AP(z)A(z) [6]. The parahermitian transposition AP(z) =
{A(1/z∗)}H involves a Hermitian transposition and time
reversal; if a matrix R(z) satisfies RP(z) = R(z), it is
also termed a parahermitian matrix, for which a number of
eigenvalue factorisations have been reported [4], [5], [6], [7],
[8], [9], [10], [11]. To avoid the route via two PEVDs, a
polynomial QR decomposition has been exploited in [12].
Further, a direct polynomial SVD has been created by a
Kogbetliantz-type approach to the SVD [13]. Such algorithms
can enable a number of applications ranging from e.g. MIMO
communications [14], [15], beamforming [16], to filter bank
design and paraunitary matrix completion [17].

The Kogbetliantz method in [13] is a powerful approach
that generally yields better diagonalisation and lower order
factors than those achieved via two PEVDs. The approach is
a generalisation of the second order sequential best rotation
(SBR2) algorithm, which calculates the PEVD of paraher-
mitian matrices [6], [8]. It is an iterative algorithm, that
in every step eliminates the largest off-diagonal element by
transfering its energy onto the diagonal. For the EVD of
parahermitian matrices, SBR2 performs a similarity transform,
where an elementary paraunitary matrix and its parahermitian
transpose are left- and right-multiplied against the result from
the previous iteration. In the Kogbetliantz approach in [13],
this approach is modified to permit different paraunitary
matrices for the left- and right-multiplications. In this paper,
we want to explore whether performance improvements can
be attained by borrowing ideas from a sequential matrix
diagonalisation (SMD) algorithm for parahermitian matrices.
In SMD, more energy is transfered per iteration, whereby for
the PEVD of parahermitian matrix significant advantages have
been reported [18], [19].

Therefore, below we review some aspects of a polynomial
SVD in Sec. II before introducting the proposed generalised
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SMD algorithm for a direct polynomial SVD in Sec. III. Its
performance is explored in Sec. IV.

II. POLYNOMIAL SVD

In this section, we highlight the properties of a polynomial
SVD as in (2), followed by a brief review of the Kogbetliantz
approach in [13].

A. Analytic SVD

For an analytic A(z) : C → CM×N that is not tied to
a multiplexing operation, there exists an analytic, diagonal
Σ(z) that is real-valued on the unit circle, as well as analytic
left- and right-singular vectors as in the columns of U(z) and
V (z) that are unique up to common allpass filters [20], [21].
However, the singular values in Σ(z), when evaluated on the
unit circle, must be permitted to intersect and even take on
negative values — an observation previously made also for the
case of matrices in a continuous time parameter [22], [23]. In
this case, (2) holds with equality.

Time domain polynomial matrix factorisation methods such
as [6], [12], [13], [8], [19], [24] typically encourage spectrally
majorised eigen- or singular values, such that for Σ(z) =
diag{σ1(z), . . . , σK(z)} with K = minM,N ,

σk(e
jΩ) ≥ σk+1(e

jΩ) ∀Ω, k = 1, . . . , (K − 1) (3)

is satisfied, i.e. they must not intersect. In case of the polyno-
mial EVD, the SBR2 algorithm in [6], [8] has been explicitly
proven to yield a spectrally majorised result [25]. Thus,
algorithmic solutions may deviate from the analytic solution,
such that, either due to falsely assumed spectral majorisation
or due to the approximation of infinite order factors by Laurent
polynomials, (2) does not hold with equality. In practice
however, due to estimation errors, singular values will be
spectrally majorised with probability one [26], such that only
approximation errors impact on the precision of (2).

B. Polynomial Kogbetliantz Algorithm

The polynomial Kogletliantz approach in [13] is a general-
isation of the SBR2 algorithm, that extends the application
of the latter from parahermitian to general matrices. The
algorithm starts with the initialisation S(0)(z) = A(z). This
initialisation may involve a unitary phase correction to the
entire matrix, such that for S(0)[τ ] ◦ • S(0)(z), the coefficient
matrix of order zero, S(0)[0], is real valued. We will refer to
this coefficient matrix for τ = 0 of a polynomial matrix as the
‘zero plane’ below.

At the ith iteration, the Kogbetliantz approach generates
an enhanced diagonalised S(i)(z) in two steps. Firstly, the
maximum off-diagonal component is brought to the zero-plane
by delay operations. Secondly, a Givens rotation transfers the
energy of this component onto the diagonal. For the first step,

{mi, ni, τi} = arg max
m,n,τ
j ̸=k

|s(i−1)
m,n [τ ]| (4)

determines the location of the maximum off-diagonal element,
where s

(i−1)
m,n [τ ] is the element in the mth row and nth

column of S(i−1)[τ ]. With the identified parameters, two delay
matrices

B(i)
r (z) = blockdiag

{
Ini

, z−τi , IM−ni

}
(5)

B
(i)
l (z) = blockdiag{Ini

, zτi , IN−ni
} (6)

are formed. Thus,

S(i− 1
2 )(z) = B

(i)
l (z)S(i−1)(z)B(i)

r (z) (7)

contains in its zero plane the same diagonal elements as
S(i−1)(z), but the maximum off-diagonal component and
also some other elements in the nith row and nith column
have been transfered such that s

(i− 1
2 )

mi,ni [0] = s
(i−1)
mi,ni [τi]. This

is accomplished by B(i)
r (z) delaying the nith column by τi

samples, while B(i)
r (z) advances the nith row.

For the second step, a Givens rotation via matrices G(i)
r and

G
(i)
l transfers the the energy of s

(i− 1
2 )

mi,ni [0] onto the diagonal,
such that

S(i)(z) = G
(i)
l S(i− 1

2 )(z)G(i)
r . (8)

Since this operation is applied across the entire matrix and
not just to the zero plane, it may undo some of the efforts in
previous iterations. Overall, since the energy in the diagonal
monotonuously increases while the overall energy in S(i)(z)
remains unaltered from S(i−1)(z), the algorithm can be proven
to converge [13]. The iterative process is terminated when
either the maximum off-diagonal element falls below a given
threshold or a specified maximum number of iterations has
been reached. Then after K iterations, for the singular values,
Σ(z) is extracted as the diagonal of S(K)(z), and

U(z) =
K∏
i=1

{
B

(i)
l (z)

}P{
G

(i)
l

}H

(9)

V (z) =

K−1∏
k=0

B(K−k)
r (z)G(K−k)

r (10)

will provide the left- and right-singular vectors. In order to
limit the polynomial order of the extracted factors, it may be
advantageous to apply trimming during the iterative process,
or after the algorithm has terminated [27], [6], [28], [24], [29].

III. GENERALIZED SEQUENTIAL MATRIX
DIAGONALIZATION

The Kogbetliantz approach in Sec. II-B represents a general-
isation of SBR2; it eliminates one largest off-diagonal element
per iteration. The cost is moderate, but the polynomial order
of the result grows with every iteration. Therefore, in this
section, we generalise the SMD algorithm, which in general
is capable of transfering more energy per iteration than SBR2.
This generalised SMD algorithm is outlined in this section.

A. Initialisation

The proposed algorithm starts with A(z) : C → CM×N .
Without loss of generality, we assume M ≥ N , as otherwise
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we can operate with AP(z) instead. We first perform a
diagonalisation of its zero plane matrix A[0] via an SVD,

A[0] = U(0)S(0)[0]V(0),H . (11)

Based on this factorisation, the initial step for the algorithm
is

S(0)(z) = U(0),HA(z)V(0) . (12)

Note that U(0) and V(0) are applied to the entirely of A(z),
but will ensure that the zero plane matrix S(0)[0] is indeed
diagonal and real-valued. We also record initial estimates for
the left- and right-singular vectors as U (0)(z) = U(0) and
V (0)(z) = V(0).

B. Iterative Procedure

Following the initialisation in (12), any subsequent iterations
i = 1, 2, . . . repeat the three steps below. Firstly, in the ith
iteration, we transfer the nith column and the nith row of
A(i−1)(z) to the zero plane. This step exploits the matrices
B(i)

r (z) and B
(i)
l (z) defined in (5) and (6), and generates

a shifted version S(i− 1
2 )(z) according to (7). The particular

row and delay selection for this step can differ from (4), and
we define a general column norm that excludes any diagonal
elements, such that

∥ŝ(i−1)
n [τ ]∥p =


M∑

m=1,m̸=n

|s(i−1)
m,n [τ ]|p


1
p

. (13)

For p → ∞, the norm picks the maximum element, and the
selection is identical to (4). The resulting algorithm version
is termed the maximum element generalised SMD (ME-
GSMD). Since we ultimately want to perform a complete
diagonalisation of the zero plane matrix, it appears promising
to shift more energy to the zero plane than with ME-GSMD.
This can be accomplished for p = 2, and we term the resulting
precedure the GSMD algorithm.

Secondly, we now diagonalise the zero plane of the shifted
matrix S(i− 1

2 )(z) = B
(i)
l (z)S(i−1)(z)B(i)

r (z). By computing
an SVD of its zero plane matrix S(i− 1

2 )[0] = U(i)D(i)V(i),H,
we determine

S(i)(z) = U(i),HS(i− 1
2 )(z)V(i) . (14)

This operation diagonalises the zero plane matrix, but also
modifies all other entries in S(i− 1

2 )(z).
Thirdly, we update the left- and right-singular values as

U (i)(z) = U (i−1)(z)B
(i),P
l (z)U(i) (15)

V (i)(z) = V (i−1)(z)B(i)
r (z)V(i) , (16)

based on the previous estimates, the delay matrices, and the
unitary matrices obtained from the application of an SVD in
(14).

At each iteration, S(i)(z) grows in order by 2|τi|, and
U (i)(z), and V (i)(z) each grow in order by |τi|. It may
therefore be opportune to apply trimming [27], [6], [28], [24],
[29] at each iteration step, thus stemming the order growth

and somewhat arresting the computational complexity of the
algorithm.

C. Convergence and Termination

It can be shown that with each iteration step, the overall
energy within A(z) remains unaltered while the energy on
the diagonal monotonously increases. However, such a proof
is beyond the scope of this paper; for the special case of A(z)
being a parahermitian matrix, the GSMD algorithm reduces to
the SMD algorithm, for which an explicit convergence proof
is reported in [19].

The iterations continue until either a sufficiently low thresh-
old for the off-diagonal elements defined via (13) is attained,
or until a predefined maximum number of iterations is reached.
Thus, after L iterations, we can extract the approximate
polynomial SVD factors of (2) as

Û(z) = U (L)(z) , V̂ (z) = V (L)(z) , (17)

while

Σ̂(z) = S(L)(z) . (18)

Note that Σ̂(z) may still contain some non-zero off-diagonal
components albeit of small magnitude.

IV. SIMULATIONS AND RESULTS

To compare the two proposed approaches, ME-GSMD and
GSMD, against the polynomial Kogbetliantz approach in [13]
— a generalisation of the SBR2 algorithm [6], [8] — this
section presents some simulation results.

A. Performance Metrics

In order to assess the performance of the various polynomial
SVD algorithms, we utilise the diagonalisation η,

η =

∑
τ ∥Σ[τ ]∥2F∑
τ ∥Σ̂[τ ]∥2F

, (19)

where Σ[τ ] is same as Σ̂[τ ] but with its off-diagonal elements
set to zero. For a completely diagonalised Σ̂[τ ], this metric η
would be unity. To assess the algorithmic performance, we
also measure the execution time of the algorithms.

For gauging the computational complexity of a practical im-
plementation in general communications or signal processing
application, the order of the achieved polynomial SVD factors
is important. Therefore we assess the orders of both right
and left singular vectors, denoted by O{Û(z)} and O{Û(z)}
respectively.

B. Numerical Example

Before conducting extensive simulations, we demonstrate
the performance of the proposed method using a numerical
example. We create a 4× 3 polynomial matrix A(z) of order
2, with coefficients drawn from a normal distribution with zero
mean and unit variance. The generated matrix is characterised
in Fig. 1.

Prior to executing the algorithm, the diagonalisation ratio η
is 0.2452. Running GSMD, we achieve a diagonalisation ratio
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Fig. 1. Matrix A[τ ] ◦ • A(z) for numerical example, showing the moduli
of its elements, |am,n[τ ]|, m = 1, . . . , 4 and n = 1, 2, 3.

0

5

-10 0 10
0

5

-10 0 10
0

5

-10 0 10

0

5

-10 0 10
0

5

-10 0 10
0

5

-10 0 10

0

5

-10 0 10
0

5

-10 0 10
0

5

-10 0 10

0

5

-10 0 10
0

5

-10 0 10
0

5

-10 0 10

time index τ

|σ̂
m

,n
[τ
]|

Fig. 2. Approximately diagonalised matrix Σ̂[τ ] derived from A[τ ] in Fig. 1
using the GSMD algorithm with L = 100 iterations.

of η = 0.9998 after 100 iterations. The resulting diagonalised
matrix is shown in Fig. 2 where only 10 central lags are
displayed, and trailing values close to zero are suppressed. As
a comparison, the generalised SBR2 approach that forms the
polynomial Kogbetliantz method in [13] requires 205 iterations
to reach a similar diagonalisation ratio as GSMD.

C. Ensemble Results

We construct an ensemble of 500 random instantiations of
A(z) : C → C5×3 of order O{A(z)} = 2, whose coefficients
are drawn from a normal distribution with zero mean and unit
variance. We compare the proposed two algorithms — GSMD
and ME-GSMD — against the polynomial Kogbetliantz ap-
proach, which implements a generalised SBR2 (GSBR2) al-
gorithm. The various results below represent averages across
the ensemble.
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Fig. 3. Ensemble average of η versus iteration number.

First, we compare the diagonalisation performance η of
the algorithms over a run of L = 50 iteration. For this
test, the order of the polynomial SVD factors are of a lesser
importance, and in order to ensure that algorithms perform
the desired number of iterations, the trimming threshold is set
to zero. The average diagonalisation is shown in Fig. 3. All
algorithms converge towards η = 1 as the number of iterations
L increases. The GSMD algorithm, utilising the L2 norm in
(13) and hence transfering the column with maximum power
in each iteration, provides a slightly faster convergence than
the ME-GSMD, which looks for the maximum off-diagonal
element via the L∞ norm in (13). Both of these proposed
method converge significantly faster than the benchmark,
polynomial Kogbetliantz approach in [13], here refered to as
GSBR2.

The execution times over 50 iterations are 0.042 ± 0.08s
for GSMD, 0.044 ± 0.009 for ME-GSMD, and 0.04 ± 0.01
for GSBR2. Hence, the algorithms exhibit very similar overall
complexities, and Fig. 3 can also be taken as a rough indication
of what a comparison of diagonalisation versus execution time
would provide.

The order growth of the paraunitary matrices Û(z) and
V̂ (z) is illustrated in Figs. 4 and 5, displaying the achievable
diagonalisation η versus the orders of the left-singular vectors,
O{Û(z)}, in Fig. 4 and the orders of the right-singular vec-
tors, O{V̂ (z)}, in Fig. 5. The results demonstrate that GSMD
and ME-GSMD yield paraunitary matrices that can be more
economically applied in order to achieve good diagonalisation,
with an advantage for GSMD over ME-GSMD. The former
tends to transfer more energy per iteration, and since the order
of the polynomial SVD factors are likely to grow with each
iteration, the smaller number of iterations indicated in Fig. 3
also translate into lower orders in Figs. 4 and 5. Both methods
yield significantly lower order paraunitary matrices compared
to the benchmark, GSBR2. Note that this difference in per-
formance is more pronounced for the left-singular vectors in
Fig. 4 with Û(z) : C → C5×5 compared to the shorter right-
singular vectors in the smaller V̂ (z) : C → C3×3 in Fig. 5.
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Fig. 4. Ensemble average of η versus ensemble median of order of Û(z).
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Fig. 5. Ensemble average of η versus ensemble median of order of V̂ (z).

V. CONCLUSION

In this paper, we have proposed a generalised sequential
matrix diagonalization algorithm for the SVD of polynomial
matrices. This is an extension of the SMD algorithm [18], [19],
which is applicable to parahermitian matrices, to the more
general case of rectangular matrices of transfer functions. This
generalisation is akin to the way a benchmark algorithm, the
polynomial Kogbetliantz approach in [13] extends the SRB2
algorithm [6], [8]. Ensemble simulations show that GSMD
can achieve better diagonalisation with lower order polynomial
matrices compared to this benchmark.
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Abstract—A novel adaptive architecture is conceived to face
with the problem of multiple point-like targets detection buried
in Gaussian disturbance with the lacking of targets information,
including their positions, number, and angles of arrival. To this
end, a target-rich scenario where the clutter properties vary over
the range profile is considered. Such distinct clutter properties are
modeled in terms of different interference covariance matrices
that provide the basis to jointly classify clutter and targets over
the range. Specifically, suitable estimates of the unknown param-
eters are figured out by adopting the expectation-maximization
algorithm together with a grid search approach. Then, a decision
scheme based upon the Likelihood Ratio Test is exploited
along with the estimated values. The performance assessment,
conducted resorting to simulated data, highlights the effectiveness
of the proposed scheme in heterogeneous interference.

Index Terms—Clutter classification, expectation-maximization,
heterogeneous environment, multiple targets, radar detection

I. INTRODUCTION

Adaptive radar detection embedded in Gaussian interference
is a ubiquitous task, and due to the advances in electronic
technology and digitalization, it has received a great attention
and continuous performance enhancement over the past few
decades. The complexity of operating scenarios is proportional
to the increase in computational resources that allows for
miniaturized high performance sensors and processing boards.

From this point of view, the heterogeneity assumption for
the radar returns, namely the statistical properties of the
interference vary over the range bins due to various types
of terrain, clutter discrete, or outliers, is becoming a very
common situation of practical interest. In this context, several
interesting solutions have been proposed with novel contribu-
tions on clutter classification. In [1], [2], adaptive architectures
are designed to localize the clutter edge positions present in
the radar reference window. Precisely, a sliding window moves
over the entire radar window and for each position a test on
the presence of a clutter edge is performed. Another approach
to deal with the problem of clustering clutter returns is
provided by [3]. At the design stage, a classification procedure
exploiting the Expectation-Maximization (EM) algorithm [4]
and the latent variable model [5] has been proposed with

This work was supported by the National Natural Science Foundations of
China under Grant No. 61971412 and No. 62201564.

the capability of partitioning the heterogeneous dataset into
homogeneous clusters. More recently, classification schemes
are proposed to identify the data homogeneity, accounting
for homogeneous, partially-homogeneous environments with
possible clutter edges [6], [7].

Another challenging scenario in modern radar systems is
the target-rich environment, where the structured echoes may
contaminate training data leading to a high risk of incorpo-
rating target components into the covariance matrix estimate
with a consequent reduction of the receiver sensitivity. In [8],
a tangible example of this problem is provided by the so-
called Adaptive Matched Filter with De-emphasis (AMFD)
that with the de-emphasis parameter equal to 0 is equivalent
to the Adaptive Matched Filter (AMF) derived in [9]. However,
the AMFD can return poor detection performance with respect
to the AMF and Kelly’s detector [10]. To overcome this
drawback, architectures not only capable of identifying het-
erogeneous clutter returns having different statistical properties
but also of jointly detecting multiple point-like targets within
each clutter region are urgently needed.

In this work, we elaborate on the systematic framework
proposed in [11] to develop algorithms to jointly classify the
clutter echoes and detect multiple point-like targets whose
positions, number, and Angle of Arrival (AoA) are unknown.
To this end, we leverage the contaminated Gaussian model
for the interference1 and introduce hidden random variables
that represent different operating situations at range bin level.
The unknown interference and target parameters are estimated
by a suitable modification of the EM algorithm in conjunction
with a grid search approach to seek the most likely estimates of
the AoAs. Then, a decision scheme based upon the Likelihood
Ratio Test (LRT) is built up to accomplish the detection task.
Finally, the numerical examples obtained over synthetic data
highlight the effectiveness of the proposed architecture.

The remainder of this work is organized as follows. In the
next section, the formal statement of the addressed problem is
provided whereas in Section III , the proposed architecture is

1In what follows, we use the term interference to denote the overall
disturbance affecting radar data that, generally speaking, is the sum of thermal
noise and clutter. When we use the term clutter to denote the interference, it
is understood that the clutter component is the most significant.
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designed. Section IV is devoted to the performance assessment
and, finally, concluding remarks are drawn in Section V.

II. PROBLEM FORMULATION

Let us denote by z1, . . . ,zK the N -dimensional vectors
representing the returns from K range bins of the region
under surveillance, in which the statistical characterization
of the clutter component is assumed to be range-dependent
[11]. The set Ω = {1, . . . ,K} denotes the cardinality of
zk, k = 1, . . . ,K, Ωcl ⊆ Ω, l = 1, . . . , L2 represents the
unknown indices of range bins sharing the same interference
covariance matrix with L the known number of homogeneous
subsets coming from the a priori information about the terrain
types of the interested region. Moreover, Ωtl ⊆ Ωcl indexes
vectors containing target components within Ωcl . Notice that
once Ωtl has been estimated, the positions and number of
targets within the entire data window can be obtained. With the
above remarks in mind, the detection problem for the multiple
deterministic targets can be formulated as the following binary
hypothesis test where l = 1, . . . , L H0 : zk ∼ CNN (0,M l), k ∈ Ωcl ,

H1 :

{
zk ∼ CNN (0,M l), k ∈ Ωcl \ Ωtl ,
zk ∼ CNN (αkv(θt),M l), k ∈ Ωtl ,

(1)

where H0 is the noise-only hypothesis, H1 denotes the signal-
plus-interference hypothesis, CNN (0,M l) denotes the N -
dimensional circular complex Gaussian distribution with mean
0 and unknown positive definite covariance matrix in the
lth clutter region M l. Moreover, αk ∈ C is an unknown
deterministic factor accounting for target response and channel
effects, v(θt) ∈ CN×1 denotes the spatial steering vector
pointed along θt [12], which is the unknown AoA of each
target, Ωcl \ Ωtl represents the index vector containing the
homogeneous returns in terms of their covariance matrix
except for the targets components, and zks are statistically
independent.

For future reference, let us denote by Z = [z1, . . . ,zK ] ∈
CN×K the overall data matrix. P0,k = {Ωcl ,M l : l =
1, . . . , L} and P1,k = {Ωtl ,Ωcl , θt, αk,M l : l = 1, . . . , L} the
sets of unknown parameters associated with the distribution
of zk under H0 and H1, respectively. Based on these, the
Probability Density Functions (PDFs) of zk under H0 are

f0(zk;P0,k) =
exp{−tr [M−1

l zkz
†
k]}

πN det(M l)
, k ∈ Ωcl , (2)

and under H1

f1(zk;P1,k) =


exp

{
−tr

[
M−1

l zkz†k
]}

πN det(M l)
, k ∈ Ωcl \ Ωtl ,

exp
{
−tr

[
M−1

l uku†k
]}

πN det(M l)
, k ∈ Ωtl .

(3)

where uk = zk − αkv(θt), tr (·), det(·), and (·)† denote the
trace, determinant, and conjugate transpose, respectively.

2We have ∪Ll=1Ωc
l = Ω.

III. PROPOSED ARCHITECTURE DESIGN

The aftermentioned problem can be viewed as a classi-
fication problem of heterogeneous clutter as well as a de-
tection problem of multiple targets. Let us remind that the
clutter distribution parameters are unknown and, hence, must
be estimated from data. However, obtaining the Maximum
Likelihood Estimates (MLEs) of such parameters is a difficult
task from the standpoint of mathematics [3], [13]. Thus, we
firstly solve the estimation problem by introducing the hidden
random variables and devise iterative procedures based upon
the EM algorithm and a grid search method. Finally, an
adaptive LRT detector is built up based on the estimates.

A. Estimation procedures for deterministic targets

Let us assume that K independent and identically dis-
tributed discrete random variables, cks, k = 1, . . . ,K say,
which have unknown Probability Mass Function (PMF),
P (ck = ns,l) = ps,l with ns,l ∈ {1, . . . , Lc} coding different
operating situations, Lc = Ls + L, s = 0, 1, accounting for
the number of clutter covariance classes and the presence of a
possible target controlled by Ls, s = 0, 1. As a consequence,
Lc = L under H0 and Lc = 2L under H1. Accordingly, the
logarithm of zk under Hi, i = 0, 1 can be rewritten as

g1(zk;P ′1,k) =
1∑
s=0

L∑
l=1

ps,lf1(zk|ck = ns,l;P1,k,l), (4)

g0(zk;P ′0,k) =
L∑
l=1

p0,lf0(zk|ck = n0,l;Mn0,l
), (5)

where P1,k,l = {M l, αk, θt : l = 1, . . . , L}, P ′1,k = P1,k,l ∪
A, P ′0,k = Mn0,l

∪ A with A = {ps,l}l=1,...,L
s=0,1 and n0,l the

indices of clutter region under H0. Note that when there is no
target in the kth range bin under H1, namely s = 0, we set
α0,k = 0 and ignore the target AOA. Notice that the estimation
procedures under H0 have been mostly developed in [3] and,
hence, are omitted here for brevity.

Applying the EM algorithm under H1, we can write the
joint log-likelihood of Z as follows

L(Z;P1) =
K∑
k=1

log g1(zk;P ′1,k)

=
K∑
k=1

log

[
1∑
s=0

L∑
l=1

ps,lf1(zk|ck = ns,l;P1,k,l)

]
, (6)

where P1 = ∪Kk=1P
′
1,k. In order to mitigate the overestimation

inclination of MLEs, we borrow likelihood approximations
resorting to the Model Order Selection (MOS) rules [14].
Before moving on, notice that the joint estimation of M l, α1,k

and θt is a difficult task due to the intractable mathematics.
A suboptimum solution is to apply EM algorithm first on the
basis of a given θt ∈ {θ1, . . . , θT }. Then, the target AoA is

52



estimated through a grid search. Update rule at the E-step is

q
(h−1)
k (Ls+ l)

=

f1

(
zk|ck= ns,l; P̂

(h−1)
1,k,l

)
e−u(s)p̂

(h−1)
s,l

1∑
j=0

L∑
i=1

f1

(
zk|ck= nj,i; P̂

(h−1)
1,k,l

)
e−u(j)p̂

(h−1)
j,i

, (7)

where P̂
(h−1)
1,k,l and p̂(h−1)s,l are the estimates of P1,k,l and ps,l

in the (h−1)th iteration with known AoA, u(j), j = 0, 1 is the
penalty term borrowed from the MOS rules, whose expression
is u(j) = (N2 + 2j)(1 + ρ)/2 with ρ ≥ 1 for Generalized
Information Criterion (GIC) [15].

The second step is the M-step leading to the following
maximization problem with respect to P1

P̂
(h)

1 = arg max
P1

{
K∑
k=1

1∑
s=0

L∑
l=1

q
(h−1)
k (Ls+ l)

× log f1(zk|ck = ns,l;P1,k,l)

+
K∑
k=1

1∑
s=0

L∑
l=1

q
(h−1)
k (Ls+ l) log ps,l

}
. (8)

Observing that the estimation procedure with respect to ps,l,
s = 0, 1, l = 1, . . . , L, is independent of that over M l, α1,k

and θt. Thus, we start from the optimization over ps,l solved by
using the method of Lagrange multipliers to take into account
the constraint

∑1
s=0

∑L
l=1 ps,l = 1. We obtain

p̂
(h)
s,l =

1

K

K∑
k=1

q
(h−1)
k (Ls+ l), s = 0, 1, l = 1, . . . , L. (9)

Ignoring the terms related to ps,l in (8) and replacing the PDFs
with their expressions, the maximization problem with respect
to the rest parameters of interest is tantamount to

min
α1,k

k=1,...,K

min
Ml

l=1,...,L

K∑
k=1

1∑
s=0

L∑
l=1

q
(h−1)
k (Ls + l)

{
log det(M l)

+ tr
[
M−1

l (zk − αs,kv(θt))(zk − αs,kv(θt))
†]}. (10)

A cyclic optimization procedure is used to estimate M l and
α1,k. More specific, assume α1,k is known and estimate M l

in the (m−1)th iteration of the inner procedure. Then, set the
M ls to the values obtained at the previous step and estimate
the α1,ks. To this end, we solve the following problem

min
Ml

{
− log det(M−1

l )
K∑
k=1

1∑
s=0

q
(h−1)
k (Ls+ l)

+ tr

[
M−1

l

K∑
k=1

1∑
s=0

q
(h−1)
k (Ls+ l) (11)

× (zk − α̂(h−1),(m−1)
s,k v(θt))(zk − α̂(h−1),(m−1)

s,k v(θt))
†

]}
.

where α̂(h−1),(m−1)
1,k , k = 1, . . . ,K, denote the estimates of

the α1,ks at the (h− 1)th EM step and (m− 1)th step of this
inner procedure. The minimizer can be obtained by resorting to
the following inequality [16] log det(A) ≤ tr [A]−N , where
A is any N -dimensional matrix with nonnegative eigenvalues,
and, hence, we come up with

M̂
(h−1),(m)

l =

∑1
s=0

∑K
k=1 q

(h−1)
k (Ls+ l)

1∑
s=0

K∑
k=1

q
(h−1)
k (Ls+ l)

(12)

× (zk − α̂(h−1),(m−1)
s,k v(θt))(zk − α̂(h−1),(m−1)

s,k v(θt))
†.

Now, assuming that in (10) M l = M̂
(h−1),(m)

l , l = 1, . . . , L,
and setting to zero the first derivative of the objective function
with respect to α1,k leads to

α̂
(h−1),(m)
1,k =

L∑
l=1

q
(h−1)
k (L+ l)v(θt)

†
(
M̂

(h−1),(m)

l

)−1
zk

L∑
l=1

q
(h−1)
k (L+ l)v(θt)

†
(
M̂

(h−1),(m)

l

)−1
v(θt)

.

(13)

The above inner procedure continues until a convergence
criterion is satisfied. The final estimates of α1,k and M l

are denoted by α̂
(h)
1,k and M̂

(h)

l , respectively. All the results
obtained from the maximization step are used in the next
cycle of the EM-based procedure. Finally, the optimization
with respect to AoA of targets is tantamount to

θ̂t = max
θt∈{θ1,...,θT }

L(Z; P̂
(hmax)

1 )

= max
θt∈{θ1,...,θT }

K∑
k=1

log

[
1∑
s=0

L∑
l=1

p̂
(hmax)
s,l (14)

× f1
(
zk|ck = ns,l; P̂

(hmax)

1,k,l

)]
.

where P̂
(hmax)

1 , p̂(hmax)s,l and P̂
(hmax)

1,k,l are the estimates of P1,
ps,l and P1,k,l for the maximum number of EM iterations and
for known AoA. The workflow of the estimation procedure
based on EM and grid-search are summarized in Algorithm 1
for the reader ease.

B. Adaptive detector with classification capabilities

The adaptive detector devised in this section is grounded on
the LRT where the unknown parameters are replaced by the
previously-obtained estimates, namely

K∏
k=1

g1(zk; P̂
′
1,k)

g0(zk; P̂
′
0,k)

H1
>
<
H0

η (15)

where η is the generic detection threshold to be set according
to the required probability of false alarm (Pfa). For classifica-
tion purposes, the unknown quantities that have been estimated

53



Algorithm 1: Estimation procedure based on EM and
grid-search.
Input: L, Z, θt, t = 1, . . . , T

Output: Ω̂cl , Ω̂tl , l = 1, . . . , L, P̂
′
1,k, k = 1, . . . ,K

Latent Variable Model: introduce the hidden random
variables ck, k = 1, . . . ,K accounting for different
clutter types and the presence of a possible target;

for θt, t = 1, . . . , T do
Parameters initialization: set h = 0,
P̂
′(0)
1,k , k = 1, . . . ,K;

E-step: compute the conditional expectation of zk
and obtain update rule of q(h)k (Ls+ l);

M-step: maximize the log-likelihood to get updates
for P̂

′(h+1)

1,k , k = 1, . . . ,K with the inner cyclic
iterations m = mmax;

if h = hmax or convergence criterion is satisfied
then

set t = t+ 1 and continue;
else

set h = h+ 1 and go to E-step;
end

end
Estimate θt: θ̂t = max

θt∈{θ1,...,θT }
L(Z; P̂

(hmax)

1 ).

allow us to separate the target response from the heterogeneous
clutter by exploiting the following rule under H1

zk ∼

CNN (0,M̂
(hmax)

l̂k
), 1 ≤ l̂k ≤ L,

CNN (α̂
(hmax)
k v(θ̂t),M̂

(hmax)

l̂k−L ), L+ 1 ≤ l̂k ≤ 2L,

(16)

with l̂k = arg maxl=1,...,2L q
(hmax)
k (l), where M̂

(hmax)

l̂k
and

α̂
(hmax)
k denote the final estimates of M l and α1,k at the
hmaxth step corresponding to θ̂t.

IV. ILLUSTRATIVE EXAMPLES

This section is devoted to the investigation of the classifi-
cation and detection performance of the proposed architecture
using simulated data. Specifically, we resort to standard Monte
Carlo counting technique by evaluating the detection threshold
over 100/Pfa independent runs with Pfa = 10−3 and the
Probability of Detection (Pd) over 1000 independent trials. All
the illustrative examples assume N = 8, L = 3, hmax = 15,
ρ = 3, and the maximum number of the inner cyclic iterations
mmax = 5. As for the parameters initialization of the EM
iterations under H0 and H1, we initialize the ps,ls with

ps,l = 1/Lc; the initial value of M l, namely M̂
(0)

l , is
generated in the same way as in Section IV.A of [3]. A possible

choice for α̂(0)
s,k, s = 0, 1, k = 1, . . . ,K, is

α̂
(0)
s,k =


0, s = 0,

max
l=1,...,L

 v(θt)
†(M̂

(0)

l )−1zk

v(θt)†(M̂
(0)

l )−1v(θt)

, s = 1.

As for targets’ AoA estimation, for simplicity, we sample the
angular sector under surveillance ranging from −20◦ to 20◦

with a sampling interval of 5◦. Synthetic targets assuming the
same Signal-to-Interference-plus-Noise Ratio (SINR) value lie
on the sampling grid with the AoA of 0◦. Specifically, SINR is
defined as SINR = |αk,l|2v(θn)†Σ−1l v(θn), where Σl is the
interference covariance matrix consisting of a thermal noise
component and heterogeneous clutter, αk,l is the amplitude
associated with a target in the kth range bin of the lth region,
v(θn) is the nominal steering vector with θn the nominal AoA.

Let us focus on the scenario that consists of three clutter
regions, namely, K1 = K2 = K3 = 32 range bins in each
region comprise the scenario of interest with CNR1 = 20
dB, CNR2 = 30 dB and CNR3 = 40 dB, respectively.
CNRl = σ2

c,l/σ
2
n denotes the Clutter-to-Noise Ratio in the lth,

l = 1, . . . , L clutter region, where σ2
c,l > 0 is the clutter power

and σ2
n = 1 is the thermal noise power. Five targets appear at

the 6th, 15th, 36th, 42th, and 80th range bin in the considered
scenario. With these remarks in mind, this operating scenario
yields Lc = 6 considered classes, that is classes 1-3 where the
generic vector of the lth region does not contain any target
component and classes 4-6 where the generic vector of the lth
region contains target components.

In Fig. 1, we plot a snapshot of the classification results
over one Monte Carlo trial under H1 for SINR = 20 dB.
From the figure inspection, the classifier can correctly classify
most of returns containing multiple targets and heterogeneous
clutter. In Fig. 2, we evaluate the Pd to verify the effectiveness
of the proposed algorithm in terms of target detection in
comparision with Kelly’s Generalized Likelihood Ratio Test
(Kelly’s GLRT) in [17] under multi-targets situation. In par-
ticular, in Fig. 2 (a) we plot the Pd curve of Kelly’s GLRT
under the condition that the target under test is in the 6th
range bin and other targets are regarded as jammings with
SINR = 15 dB and L = 3, in other words, the number of
secondary data is Kglrt = 95, while in Fig. 2 (b) we plot it
assuming Kglrt = 16 and the cell under test is the number 9.
Notice that, in this case, secondary data used by Kelly’s GLRT
are affected by one interfer only. The results show that the
proposed detector exhibits much better detection performance
than Kelly’s GLRT, which can be motivated by the fact that the
secondary data contamination caused by the redundant targets
leads to the performance degradation of the classical detector.
In order to measure the error in target AoA estimation, we
estimate the Root Mean Square Error (RMSE) values with
the true target AoA of 0◦ being on-grid and of 2◦ being off-
grid, respectively, over 1000 trials in Fig. 3. Note that the
RMSE metric decreases as the SINR increases, and in Fig.
3 (a) it becomes 0 degree for SINR values greater than 14
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dB whereas the performance degration occurs in Fig. 3 (b)
where the minimum RMSE value is approximately 2 degrees
for SINR > 30 dB.

Fig. 1: Classification snapshot for SINR =20 dB under H1.

(a) (b)

Fig. 2: Pd of the proposed detector and Kelly’s GLRT versus
SINR under H1 assuming Pfa = 10−3.

(a) (b)

Fig. 3: RMSE values of AoA under H1 for different SINRs:
(a) true target AoA is on-grid; (b) true target AoA is off-grid.

V. CONCLUSIONS

This paper has addressed the problem of multiple point-like
targets detection from an unknown AoA and in the presence

of heterogeneous Gaussian clutter and the ubiquitous thermal
noise. At the design stage, we account for the heterogeneity
of the operating scenario modeled as a variation of covariance
matrices over the range cells. Within this framework, the EM
algorithm in conjunction with grid search technique are used
to estimate the unknown distribution parameters. Hence, the
clutter region classification results, targets positions over range
and AoA can be obtained. Finally, an adaptive detector is
introduced resorting to the LRT criterion, and the superiority
with respect to a conventional detector is verified based
on simulated data. Possible future research can extend the
proposed framework to the scenarios that consider the joint
presence of point-like as well as range-spread targets.
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Abstract—The growing need for accurate and reliable tracking
systems has driven significant progress in sensor fusion and object
tracking techniques. In this paper, we design two variational
Bayesian trackers that effectively track multiple targets in
cluttered environments within a sensor network. We first present
a centralised sensor fusion scheme, which involves transmitting
sensor data to a fusion center. Then, we develop a distributed
version leveraging the average consensus algorithm, which is
theoretically equivalent to the centralised sensor fusion tracker
and requires only local message passing with neighbouring
sensors. In addition, we empirically verify that our proposed
distributed variational tracker performs on par with the cen-
tralised version with equal tracking accuracy. Simulation results
show that our distributed multi-target tracker outperforms the
suboptimal distributed sensor fusion strategy that fuses each
sensor’s posterior based on arithmetic sensor fusion and an
average consensus strategy.

Index Terms—distributed sensor fusion, multiple object track-
ing, variational inference, average consensus, data association

I. INTRODUCTION

The distributed multi-sensor multi-object tracker has
emerged as a promising approach due to its potential for
reduced communication costs and increased robustness against
single-node faults when compared to centralised fusion solu-
tions. Several optimal algorithms for distributed data fusion
have been developed, relying solely on local message passing
[1], [2]. However, these techniques necessitate specific net-
work topologies, such as fully connected and tree-connected
networks, and often come with a high computational burden
that limits their applicability in certain situations.

To overcome the limitations, several approximate methods
have been studied. One popular fusion strategy is geometric
average fusion, such as the widely used generalised covariance
intersection method proposed in [3], with the aim of avoiding
double counting of common information while fusing multiple
multi-object densities with unknown correlations among sen-
sors. An alternative approach is the arithmetic average fusion,
which has been shown to perform better when fusing random
variables or point estimates [4]. Consensus-based algorithms
[5]–[7] have been introduced to enable geometric or arithmetic
average fusion in a fully distributed manner. The analysis and
comparison of these two fusion strategies can be found in [4],
[8]. However, these methods that fuse the local posteriors of
each sensor are suboptimal and can result in degraded tracking
performance. In [9], a consensus-based method was designed

to obtain an approximation of the joint likelihood function
by distributing the likelihood functions of each sensor. This
likelihood consensus method was then developed to implement
distributed particle filters and distributed Gaussian particle
filters for multiple target tracking applications. Nevertheless,
the joint likelihood function is approximate, and the estimation
accuracy and fusion efficiency can be affected by the choice
of the basis functions.

Here we propose a solution for distributed sensor fusion
and object tracking by leveraging the non-homogeneous Pois-
son process (NHPP) measurement model and the recently-
developed NHPP trackers [10]. The original NHPP tracker
in [11] successfully avoids the data association problem, but
its particle filter implementation is limited by the curse of
dimensionality. To address this issue, an association-based
NHPP measurement model was introduced in [12] to enable
efficient parallel computing and a tractable structure. Addi-
tionally, a fast Rao-Blackwellised sequential Markov chain
Monte Carlo sampling scheme was developed in [13] with
improved efficiency compared to [12] for linear Gaussian
models. While sampling-based methods like those presented
in [12]–[14] can theoretically converge to optimal Bayesian
filters, their computational requirements can be intensive when
the number of targets and measurements increases. Therefore,
a high-performance variational inference implementation was
designed in [10], which achieves comparable tracking accu-
racy with sampling-based implementations [12] while offering
faster processing speeds.

This paper develops an extension of the variational Bayes
multi-object tracker presented in [10] to multi-sensor cases, as
it has demonstrated superior tracking performance in terms of
both accuracy and implementation efficiency. Our key contri-
bution is the development of a variational filtering framework
for tracking multiple objects in a distributed sensor network.
This is accomplished by leveraging the average consensus
algorithm, which, when successfully converged, allows the dis-
tributed version to be theoretically equivalent to the centralised
sensor fusion tracker. In particular, each sensor in the network
runs locally using its own measurements while communicating
with its neighbouring sensors to obtain global statistics for the
local coordinate ascent update. Once the average consensus
algorithm has converged, the local estimates for each sensor
are updated using the global statistics obtained from the con-
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sensus. Therefore, this approach only requires communication
with neighbouring sensors and does not require complete
knowledge of the network topology. Overall, the proposed
approach allows for distributed sensor fusion and tracking
that can achieve tracking accuracy equivalent to centralised
fusion while being more efficient in communication costs.
The simulation results show that compared to the arithmetic
fusion method that fuses the local posteriors of each sensor,
the proposed distributed variational tracker exhibits superior
tracking accuracy and efficiency.

II. PROBLEM FORMULATION AND MODELLING

This paper considers tracking multiple targets in clutter
under a distributed sensor network where the communication
links between sensors can be time-varying. Assume that there
are K targets in the surveillance area. At each discrete time
step n, their joint state is Xn = [X⊤

n,1, X
⊤
n,2, ..., X

⊤
n,K ]⊤,

where each vector Xn,k, k ∈ {1, ...,K} denotes the kinematic
state for the k-th target. Suppose that the targets are observed
by a sensor network consisting of Ns sensors, each capable
of observing the entire tracking area. The time-varying sensor
network at time t can be modelled as a graph G(t) = {S, E(t)}
at any given continuous time t, where the sensor set is denoted
by S = {1, 2, . . . , Ns}, and E(t) is the set of edges with
the existence of edge (i, j) meaning that the i-th sensor can
communicate with the j-th sensor at time t. The set of neigh-
bours of sensor i is denoted by Ni(t) = {j | (i, j) ∈ E(t)}.
The degree di(t) of the i-th sensor represents the number
of its neighbouring sensors with which it can communicate,
i.e., di(t) = |Ni(t)|. In a sensor network, the measurements
received from all sensors at time step n can be denoted by
Yn = [Y 1

n , Y
2
n , ..., Y

Ns
n ]. Each Y s

n includes measurements
acquired by the s-th sensor, and Y s

n = [Y s
n,1, ..., Y

s
n,Ms

n
], where

Ms
n is the total number of measurements received at the s-th

sensor (s = 1, ..., Ns). Subsequently, Mn = [M1
n, ...,M

Ns
n ]

records the total number of measurements received from all
sensors at time step n.

A. Dynamical model

We assume that targets move in a 2D surveillance area with
each Xn,k = [x1

n,k, ẋ
1
n,k, x

2
n,k, ẋ

2
n,k]

T , where xd
n,k and ẋd

n,k

(d = 1, 2) indicate the k-th target’s position and velocity in
the d-th dimension, respectively. We assume an independent
linear Gaussian transition density for each target’s states:

p(Xn|Xn−1) =
K∏

k=1

N (Xn,k;Fn,kXn−1,k, Qn,k). (1)

where Fn,k = diag(F 1
n,k, F

2
n,k), Qn,k = diag(Q1

n,k, Q
2
n,k).

For a constant velocity (CV) model, F d
n,k, Q

d
n,k (d = 1, 2) are

F d
n,k =

[
1 τ
0 1

]
, Qd

n,k = σ2
k

[
τ3/3 τ2/2
τ2/2 τ

]
, (2)

where τ is the time interval between time steps.

B. NHPP measurement model and association prior

Here, we assume each sensor independently detects targets
in accordance with the NHPP measurement model described
in [11]. Notably, the NHPP model may vary for each sensor.
Denote the set of Poisson rates for all sensors as Λ =
[Λ1,Λ2, ...,ΛNs ]. For each sensor s, the Poisson rate vector is
defined by Λs = [Λs

0,Λ
s
1, ...,Λ

s
K ], where Λs

0 is the clutter rate
and Λs

k is the k-th target rate, k = 1, ...,K. For each sensor
s, each target k generates measurements by a NHPP with a
Poisson rate Λs

k, and the total measurement process is also a
NHPP from the superposition of the conditional independent
NHPP measurement process from K targets and clutter. The
total number of measurements from the s-th sensor follows a
Poisson distribution with a rate of Λs

sum =
∑K

k=0 Λ
s
k.

Our independent measurement model assumption signifies
that given Xn, the measurements of each sensor are con-
ditionally independent, i.e., p(Yn|Xn) =

∏Ns

s=1 p(Y
s
n |Xn).

We denote the associations of all measurements Yn by
θn = [θ1n, θ

2
n, ..., θ

Ns
n ] , with each θsn = [θsn,1, θ

s
n,2, ..., θ

s
n,Ms

n
]

(s = 1, ..., Ns) representing the association vector for the s-th
sensor’s measurements. Each component θsn,j (j = 1, ...,Ms

n)
gives the origin of the measurement Y s

n,j ; θsn,j = 0 indicates
that Y s

n,j is generated by clutter, and θsn,j = k (k = 1, ...,K)
means that Y s

n,j is generated from the target k. The adopted
conditionally independent NHPP measurement model leads
to the following properties: the joint association prior are
conditionally independent give all the measurement numbers

p(θn|Mn) =

Ns∏
s=1

p(θsn|Ms
n), (3)

and given all associations, the joint likelihood p(Yn|θn, Xn)
remains conditionally independent for each sensor, i.e.,

p(Yn|θn, Xn) =

Ns∏
s=1

p(Y s
n |θsn, Xn). (4)

Finally, for each sensor s, the NHPP measurement model
implies the following according to [10]: measurements are
conditionally independent given associations and target states

p(Y s
n |θsn, Xn) =

Ms
n∏

j=1

ℓs(Y s
n,j |Xn,θs

n,j
), (5)

where Ms
n is implicitly known from θsn since Ms

n = |θsn|, and
ℓs is the probability density function of a single measurements
received in sensor s given its originator’s state. Here we
assume the target originated measurement follows a linear and
Gaussian model while the clutter measurement is uniformly
distributed in the observation area of volume V s:

ℓs(Y s
n,j |Xn,k) =

{
N (HXn,k, R

s
k), k ̸= 0; (object)

1
V s , k = 0; (clutter)

(6)

where H is the observation matrix, and Rs
k indicates the s-th

sensor noise covariance. Moreover, the joint prior p(θsn|Ms
n)

can be factorised as the product of Ms
n independent association

priors, i.e., p(θsn|Ms
n) =

∏Ms
n

j=1 p(θ
s
n,j), where the prior for
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each association p(θsn,j) is a categorical distribution with
support θsn,j ∈ {0, ...,K}

p(θsn,j) =

∑K
k=0 Λ

s
kδ[θ

s
n,j = k]

Λs
sum

. (7)

III. COORDINATE ASCENT VARIATIONAL FILTERING FOR
CENTRALISED SENSOR FUSION

This section develops a coordinate ascent variational fil-
tering framework for tracking multiple objects in clutter in a
centralised sensor network where there exists a central hub for
collecting the measurements from multiple sensors and using
them to track the targets. The parameters K,Λ, and Rs

1:K in
Section II are assumed to be known and are therefore always
implicitly conditioned in our derivations. The objective is to
sequentially estimate the posterior p(Xn, θn|Y1:n) given obser-
vations Y1:n from all sensors in the network. Accordingly, the
exact optimal filtering can be recursively expressed as follows,

p(Xn, θn|Y1:n) ∝ p(Yn|θn, Xn)p(θn|Mn) (8)

×
∫

p(Xn|Xn−1)p(Xn−1|Y1:n−1)dXn−1,

However, this exact filtering recursion is intractable, prompting
us to replace p(Xn−1|Y1:n−1) with a tractable approximate
filtering prior. According to [10], a natural choice of this
tractable prior is the approximate filtering result/posterior from
the previous time step. In our context, where variational
Bayes is employed to approximate the target distribution, this
corresponds to using the converged variational distribution
q∗n−1(Xn−1) obtained from the approximate filtering at time
step n − 1. Therefore, the target posterior distribution of our
current approximate filtering step is

p̂n(Xn, θn|Yn) ∝ p(Yn|θn, Xn)p(θn|Mn)p̂n(Xn), (9)

where the predictive prior p̂n(Xn) is written as

p̂n(Xn) =

∫
p(Xn|Xn−1)q

∗
n−1(Xn−1)dXn−1. (10)

A. Coordinate ascent update

We assume a mean-field family of variational distributions
that satisfy the factorisation qn(Xn, θn) = qn(Xn)qn(θn).
Then, the variational distribution q∗n(Xn, θn) is chosen
from the posited family that minimises the KL divergence
KL(qn(Xn)qn(θn)||p̂n(Xn, θn|Yn)). This optimisation with
respect to qn can be done by the following coordinate ascent
algorithm that ensures convergence. We start by setting the
initial association distribution qn(θn) as q

(0)
n (θn); afterwards,

we iteratively update qn(Xn) while keeping qn(θn) fixed, and
update qn(θn) while keeping qn(Xn) fixed, repeating these
steps until convergence is achieved. The converged variational
distribution q∗n(Xn, θn) is then used to approximate the target
distribution p̂n(Xn, θn|Yn). We now present these updates.

1) update for qn(Xn): First we present the update for Xn

qn(Xn) ∝ p̂n(Xn)
K∏

k=1

N
(
Y k

n;HXn,k, R
k
n

)
, (11)

where

Rk
n =

(
Ns∑
s=1

Ωs
k,1

)−1

, Ωs
k,1 = (Rs

k)
−1

Ms
n∑

j=1

qn(θ
s
n,j = k),

(12)

Y k
n = Rk

n

Ns∑
s=1

Ωs
k,2, Ωs

k,2 = (Rs
k)

−1

Ms
n∑

j=1

qn(θ
s
n,j = k)Y s

n,j .

Such an update can be considered as updating the predictive
prior p̂n(Xn) in (10) with K pseudo-measurements Y k

n, k =
1, 2, ...,K. Given an independent initial Gaussian prior
p(X0) =

∏K
k=1 p(X0,k) and the transition in (1), the updated

variational distribution can always be in an independent Gaus-
sian form, i.e., qn(Xn) =

∏K
k=1 qn(Xn,k). Denote the con-

verged variational distribution for the k-th target at time step
n − 1 as q∗n−1(Xn−1,k) = N (Xn−1,k;µ

k∗
n−1|n−1,Σ

k∗
n−1|n−1),

then we denote its predictive prior according to (10) by

p̂n(Xn,k) =N (Xn,k;µ
k∗
n|n−1,Σ

k∗
n|n−1). (13)

The variational distribution qn(Xn,k) = N (Xn,k;µ
k
n|n,Σ

k
n|n)

can then be updated by Kalman filtering. Such an update can
be independently carried out for all targets.

2) update for qn(θn): Since qn(θn) =
∏Ns

s=1 qn(θ
s
n),

qn(θn) can be updated by individually evaluating qn(θ
s
n) for

each sensor, where the update can be performed in parallel:

qn(θ
s
n) ∝

Ms
n∏

j=1

qn(θ
s
n,j), (14)

qn(θ
s
n,j) ∝

Λs
0

V s
δ[θsn,j = 0] +

K∑
k=1

Λs
kl

s
kδ[θ

s
n,j = k], (15)

lsk = N (Y s
n,j ;Hµk

n|n, R
s
k)exp(−0.5Tr((Rs

k)
−1

HΣk
n|nH

⊤)),

where each qn(θ
s
n,j) is a categorical distribution and the

updates for θn can be independently carried out for each θn,j .

B. Initialisation

We adopt the initialisation strategy in [10]: at time step n,
the algorithm starts the recursive updates from qn(Xn) and
the initial variational distribution q

(0)
n (θsn) for each sensor s is

q(0)n (θsn) ∝
Λs
0

V s
δ[θsn,j = 0] +

K∑
k=1

Λs
kl

s,0
k δ[θsn,j = k], (16)

ls,0k = N (Y s
n,j ;Hµk∗

n|n−1, HΣk∗
n|n−1H

⊤ +Rs
k),

IV. CONSENSUS-BASED DISTRIBUTED VARIATIONAL
MULTI-OBJECT TRACKER

In this section, we present distributed variational filtering
frameworks for a sensor network without a fusion center.
The aim is to achieve the same converged variational distri-
bution q∗n(Xn, θn), as obtained in the centralised variational
filtering framework for approximating the target posterior
p̂n(Xn, θn|Yn) in (9), by solely relying on local processing
and communications between neighbouring sensors. To this
end, we assume at the initial time step 0, an identical target
state prior p(X0) is given to all sensors s = 1, ..., Ns. To
ensure the variational distribution at each sensor s converges
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Algorithm 1: Consensus-based Distributed Variational
Multi-object Tracker at time step n

Input: q∗n−1(Xn−1), Yn,Mn, maximum iteration Imax.
Initialisation: Set p̂n(Xn) according to (13).
At each sensor s:
Initialise qn(θ

s
n) according to (16).

for i = 1, 2, ..., Imax do
Compute Ωs

k,1, Ωs
k,2, k = 1, 2, ...,K using (12).

Perform average consensus with Ω̂k,1 and Ω̂k,2.
for k = 1, 2, ...,K do

Evaluate Rk
n, Y

k
n according to (19).

Update qn(Xn,k) by Kalman filtering.
end
Update qn(θ

s
n,j), j = 1, 2, ...,Ms

n using (15).
end
Set q∗n(Xn) =

∏K
k=1 qn(Xn,k), and

q∗n(θ
s
n) =

∏Ms
n

j=1 qn(θ
s
n,j).

to the same p̂n(Xn, θn|Yn) at the time step n, according to
(11), it requires the local sensor has access to the pseudo-
measurements Y k

n and Rk
n, k = 1, 2, ...,K calculated using

all values of {Ωs
k,1,Ω

s
k,2}

Ns
s=1 computed at each sensor.

The sum expressions of (12) can be computed at each
sensor by using a distributed, iterative consensus algorithm.
Specifically, we adopt the distributed average consensus al-
gorithm introduced in [7], which is guaranteed to converge
provided that the sensor network is connected, even under
time-varying communication links. For our application, given
the initial value of Ωs

k,1,Ω
s
k,2 at each sensor s, each sensor can

converge to the same average value Ω̂s
k,1 = 1

Ns

∑Ns

s=1 Ω
s
k,1 and

Ω̂s
k,2 = 1

Ns

∑Ns

s=1 Ω
s
k,2. As an example, the distributed average

consensus for computing Ω̂s
k,1 at sensor s can be described as

follows.
• At initial iteration m = 0, each sensor node s initialises

its state as Ω̂
(s,0)
k,1 = Ωs

k,1.
• For m = 0, 1, 2, ... until convergence

each sensor s updates its state by using its own state and
the states of instantaneous neighbours Ns(m):

Ω̂
(s,m+1)
k,1 = W (m)

ss Ω̂
(s,m)
k,1 +

∑
j∈Ns(m)

W
(m)
sj Ω̂

(j,m)
k,1 (17)

where W
(m)
sj is the linear weight on Ω̂

(j,m)
k,1 at node s.

Here we adopt the Metropolis weight in [7]:

W
(m)
sj =


1

1+max {d(m)
s ,d

(m)
j }

if j ∈ N (m)
s ,

1−
∑

s,k∈E(m) W
(m)
sk if j = s

(18)

In the same way, we can obtain the Ω̂s
k,2 by the same

distributed average consensus algorithm. After obtained the
converged value of Ω̂s

k,1 and Ω̂s
k,2, at each sensor s, we

can compute the required pseudo-measurements Y k
n and Rk

n,
k = 1, 2, ...,K, by the following expressions:

Rk
n = (NsΩ̂

s
k,1)

−1
, Y k

n = Rk
n(NsΩ̂

s
k,2) (19)

Fig. 1: Measurements, ground truth tracks of 50 targets; grey
dots are measurements covering the whole background, black
lines are the trajectories and green circles are starting points

Fig. 2: Simulated sensor network; blue circles are sensors and
lines indicate the communication links between sensors

In this way, during each iteration of the update for qn(Xn),
every sensor s updates qn(Xn) locally based on the centralised
pseudo-measurements calculated at all sensors using the dis-
tributed consensus algorithm, such that each sensor can behave
equivalently to the fusion center in the centralised version. The
overall distributed implementation of the variational tracker is
summarised in Algorithm 1.

V. RESULTS

In this section, we will conduct a performance compari-
son between different versions of the variational multi-object
tracker: the centralised fusion in Section III, the optimal
distributed fusion in Section IV, and the suboptimal distributed
fusion with an arithmetic average (AA) fusion strategy. Specif-
ically, the suboptimal distributed fusion adopts the similar
approximation in the literature, e.g., [8], in which each sensor
infers a multi-object posterior distribution based on local mea-
surements and, then a distributed average consensus algorithm
is implemented to fuse the derived multi-object posteriors from
each sensors using the AA fusion principle.

In the simulated dataset, the network consists of 20 sensors
as shown in Fig. 2, all observing 50 targets in the surveillance
area. The general parameter settings are as follows. For all
datasets, the total time steps are 50, and the time interval
between observations is τ = 1s. The parameters in the CV
model are σk = 5 and Rs

k = 100I where I is a 2-D identity
matrix. The target Poisson rates are set to 1; the clutter rate is
100. To evaluate the robustness of the algorithm, we generate
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Fig. 3: Mean OSPA of different fusion strategies over 50 time
steps, averaged over 20 Monte Carlo runs (average consensus
iteration for both proposed optimal distributed fusion and the
AA distributed fusion is 20)

Fig. 4: Mean OSPA of the optimal distributed fusion over
different iterations of average consensus algorithm, averaged
over 20 Monte Carlo runs

20 different measurement sets under the same parameter
settings. One sample measurement set is shown in Figure 1.
We use the optimal sub pattern assignment (OSPA) [15] metric
to evaluate the tracking performance of all methods. For the
OSPA metric, the order is set to p = 1 and the distance cut-
off value is c = 50. For both datasets, we calculate the mean
OSPA metric over all the sensors and Monte Carlo runs.

Figure 3 shows the three variational multi-target trackers’
mean OSPA of each time step calculated over all the sensors
and Monte Carlo runs. Specifically, for both proposed optimal
distributed fusion and the suboptimal AA fusion, we set the
average consensus iteration to 20 to obtain the results in
Figure 3. It is observed that the proposed optimal distributed
fusion has a much lower mean OSPA value compared to the
suboptimal AA fusion. The estimation results also confirm
the equivalence of our proposed optimal distributed varia-
tional tracker with the centralised variational tracker when the
distributed average consensus reaches convergence. Figure 4
shows mean OSPA over all the sensors, Monte Carlo runs,
and 50 time steps versus the number of iterations used in the
distributed average consensus algorithm for proposed optimal
distributed variational tracker. We can see that as the number of
iterations increases, the performance of the optimal distributed
fusion approaches the performance of the centralised fusion
within approximately 10 iterations.

VI. CONCLUSION

The paper presents a novel optimal distributed variational
multi-target tracker for sensor networks that only require
communication between neighbouring sensors. Our method
achieves equivalent tracking performance to centralised fusion
while retaining a decentralised processing architecture and
reducing communication costs. The simulation results demon-

strate the equivalence of the proposed optimal distributed
fusion and the centralised fusion in terms of tracking accuracy.
In the future, we will extend the current distributed variational
tracker to handle unknown target numbers and heterogeneous
sensor networks with varying coverage.
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Abstract—The received signal strength measurement has been
widely used in search and tracking applications and its benefit is
linked with the distance between the transmitter and receiver.
This paper proposes an online Bayesian optimisation-based
approach that relies on signal strength measurements to schedule
multiple sensors for searching and tracking a moving target,
without any prior knowledge of the target’s state or motion
model. A unique contribution lies in incorporating the Gaussian
processes factorisation method into the Bayesian optimisation
framework, which enhances the effectiveness of the proposed
approach. Numerical results obtained from different sizes of
measurements demonstrate that the proposed approach can
efficiently schedule two unmanned aerial vehicles. Particularly,
it achieves at most 21% lower computational time for deciding
measurement locations and 79% lower time for updating the
surrogate model as compared to the benchmark approach.

Index Terms—Active sensing, Bayesian optimisation, fac-
torised Gaussian process, target tracking, sensor management,
unmanned aerial vehicles, hierarchical off-diagonal low-rank
(HODLR) factorisation

I. INTRODUCTION

Target tracking is crucial for applications including sea
surveillance, autonomous vehicles, and traffic monitoring.
Model-based and data-driven approaches have been pro-
posed for this challenge, dealing with data association,
group/extended object, and sensor management. However,
many approaches rely on informative prior state beliefs which
may be unavailable in scenarios like search and rescue or
wildlife monitoring. In such cases, the active position estima-
tion [1] becomes a significant challenge as the active sensing
platform must locate and track the target simultaneously.

One way to detect and track targets is by analysing the
received signal strength (RSS). By measuring the RSS, the
distance between the sensor and the target can be estimated.
This distance can then be used to track the target over time.
Moreover, changes in the RSS signal can provide additional
information about the target, such as its velocity and direction
of movement [2]. Therefore, active sensing using RSS signals
has become an important research area in target tracking and
has demonstrated promising results in various applications.

There are three primary types of active sensing techniques
for searching and tracking targets, based on the RSS-distance

*Equal contribution.

relationship. Geometric approaches [3] rely on model inversion
and trilateration, which requires at least three receivers to
estimate the target’s position accurately. Statistical strategies
[4], [5] are designed to account for both model inaccuracies
and measurement noise by treating RSS measurements as
random variables and applying statistical filtering techniques,
such as the Kalman filter and particle filter, to refine raw
data points. Data-driven methods leverage machine learning
models, such as neural networks [6] or Gaussian processes
(GP) [7], to model the RSS-distance relationship, and optimise
their parameters during the training process. In this paper, we
follow the data-driven idea to design a Bayesian optimisation
(BO)-based probabilistic search and tracking approach.

BO is a machine learning-based optimisation method that
involves building a surrogate model for the objective function,
along with prediction uncertainty quantification using GP. BO
iteratively locates the global optimum by using an acquisition
function (AF) defined over the surrogate. BO has been applied
to solve active sensing and path planning problems [8]–[10].
In these works, GP represents the RSS-distance relationship
and AF is used to decide where to place the sensors to
collect new measurements and plan the path of the unmanned
aerial vehicles (UAVs). However, most existing works focused
on modelling stationary processes (e.g., searching for static
targets or planning based on static environments). BO can
also be used to solve dynamic and non-stationary optimisation
problems [11]–[13] by designing kernel functions to account
for non-stationary and time-varying processes.

While BO shows promise for solving active sensing prob-
lems, its computational complexity cannot be ignored, espe-
cially when a large number of measurements are collected by
the sensing platform. This is due to the n×n covariance matrix
of GP, which incurs a significant cubic computational cost
(O(n3)) with respect to the number of measurements n. This
poses challenges for real-time active sensing since both GP
model updates and AF optimisation can be time-consuming,
which is related to inversion and determinant evaluation of the
covariance matrix. To reduce the computational complexity,
this paper explores the idea of factorising the dense covariance
matrix into data-sparse hierarchical off-diagonal matrices [14],
[15]. This structure can provide a very close approximation to
the Cholesky factorisation method with only O(nlog n2) cost.
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Moreover, the computational complexity was further reduced
to O(nlog n) with a designed low-rank approximation method.

This paper proposes a BO-assisted approach for active
sensing management to search and track a moving target. In
contrast to our previous work [16] that focused on distributed
tracking, this study emphasises active tracking without any
prior position information. The main contribution is two-fold.
First, a spatial-temporal composite kernel function is designed
to account for the non-stationary and time-varying nature of
the RSS map. Moreover, several techniques are introduced to
reduce the computational cost of the GP used in BO. The
proposed approach can schedule multiple UAVs to perform
efficient area search and can also be applied to activate sensors
over time in sensor management problems [17].

The paper is structured as follows: In Section II, the problem
formulations and the fundamentals of BO are introduced.
Section III presents the proposed search and tracking approach.
Section IV presents the simulation results, while Section V
summarises the conclusions.

II. PROBLEM FORMULATION

We first model the RSS as a black-box function of the
coordinates of the measuring location and the time. Define
the location of measuring the RSS in time t as xt ∈ X ⊂ R2,
where X is the area of interest. Denote y as the measurement,
a black-box dynamic function can be represented as

y = f(xt, t) + ϵ, (1)

where ϵ is the measurement noise that is assumed to follow
a zero-mean Gaussian distribution with variance σ2. Since
the expected value of an RSS measurement is related to the
proximity between the target and the sensor, the location with
the highest expected value of RSS measurements is identified
as the target location. The task of searching and tracking a
target over time is equivalent to solving a dynamic optimisa-
tion problem [18], specifically finding the maximum of this
function. This optimisation problem can be formulated as

max f(xt, t), (2)
s.t. xt ∈ X , t ∈ T , (3)

where X and T are the spatial and temporal search spaces,
respectively. Next, we describe the GP that represents the
black-box function. The UAVs positions are optimised based
on the objective AF function.

A. Gaussian Process Regression

The unknown function f(xt, t) is a black-box function
lacking an analytical form. Therefore, a surrogate model,
namely GP, is utilised to represent this function for two
reasons. First, GP can quantify the uncertainty of the learned
RSSs in a principled way, aiding the exploration-exploitation
(EE) tradeoff for maximisation (see more details in the next
section). Second, GP functions well with small volumes of
data and is particularly useful in the early stages of the
search process where few RSS measurements are available

for building the surrogate. The GP that is placed as a prior
distribution of the function f(xt, t) can be written as

f(xt, t) ∼ GP (m(xt, t), k((xt, t), (x
′
t, t

′))) , (4)

where (xt, t) and (x′
t, t

′) are either the training or the testing
input data. m(xt, t) and k((xt, t), (x

′
t, t

′)) denote the mean
and the covariance functions of GP, respectively.

Suppose that by the time t, nt RSS measurements have been
received with time stamps t1, t2, · · · , tnt

. Define xti as the
location associated with the measurement at ti, where ti ≤ t.
In addition, define yti as the measurement at ti. Therefore,
at any t, we can have a set of 3-tuple that can be denoted
as Dt = {xti , ti, yti}

nt

i=1. Given Dt, define Kt as a covari-
ance matrix with the (i, j)th entry as k((xti , ti), (xtj , tj)).
In addition, define k∗ as a vector with the jth entry as
k((xtj , tj), (xt∗ , t∗)). Denote the set of measurements re-
ceived until t by yt = [yt1 , yt2 , · · · , ytnt

]⊺. The GP predictive
distribution at a new input (x∗, t∗) can be written as

µ∗ = m(x∗, t∗) + k⊺
∗(Kt + σ2I)−1(yt −m(x∗, t∗)), (5)

σ2
∗ = k((x∗, t∗), (x∗, t∗))− k⊺

∗(Kt + σ2I)−1k∗, (6)

where µ∗ and σ2
∗ denote the posterior predictive mean and

variance of the unknown function at (x∗, t∗), respectively.
The hyperparameters of GP are learned from the data by

maximising the log marginal likelihood that can be written as

log p(yt|Dt, θθθ) = −1/2y⊺
t (Kt + σ2I)−1yt

− 1/2 log|Kt + σ2I| − nt/2 log 2π, (7)

where θθθ represents the set of hyperparameters.

B. Acquisition Function

Selecting measuring points to evaluate the unknown func-
tion sequentially and locate the moving target efficiently
with minimum measurements is challenging. There exists an
EE dilemma in this decision-making process: Exploring the
unknown function provides knowledge but may lead to low
search efficiency. However, exploiting the learned knowledge
may miss the opportunity to measure higher RSS from under-
explored areas. To address this, an AF [19] is optimised to
determine measuring points while balancing the EE.

The selection strategy of the next measuring point depends
on the type of AF. Here we apply the expected improvement
(EI) function [20]. The objective is to find the next measuring
point with the highest EI as compared to the incumbent mea-
surement that can be defined as τnt

= maxi∈{1,2,··· ,nt} yti .
The EI function can be written as

αEI(xt, t) := E[[f(xt, t)− τnt ]
+],

=σ(xt, t)ϕ

(
∆(xt, t)

σ(xt, t)

)
+∆(xt, t)Φ

(
∆(xt, t)

σ(xt, t)

)
, (8)

where E(·) represents the mathematical expectation operation.
∆(xt, t) = µ(xt, t) − τnt

is the expected difference between
the predicted RSS at a point and the incumbent target. Here
ϕ(·) and Φ(·) denote the probability density and cumulative
density functions, respectively. In (8), the predictive standard
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Fig. 1: UAV-based searching and tracking

deviation affects the first term and the predictive mean affects
the second term. By maximising the EI function, the EE trade-
off can be well-balanced. In this work, the AF is maximised
using the grid search method.

III. EFFICIENT BO-ASSISTED SEARCH AND TRACKING

Assuming UAVs can fly over the area of interest to measure
RSS from the moving target, building an expressive and
scalable surrogate (GP) for the dynamic function is a critical
challenge. This section describes the proposed composite
kernel and GP factorisation to address these challenges.

A. Kernel Design

Inspired by [13], a spatial-temporal composite kernel

k((xt, t), (x
′
t, t

′)) = kS(xt,x
′
t) · kT(t, t

′), (9)

is introduced to capture both the spatial and temporal corre-
lations in the unknown time-varying function, where kS(·, ·)
represents the spatial kernel, used for characterising the one-
time RSS map, kT(·, ·) represents the temporal kernel which
considers the temporal correlations of the RSS.

The designed GP spatial composite kernel is a sum of a
constant kernel kS,Con and a squared exponential (SE) kernel
kS,SE. The constant kernel is added considering the fact that
the RSS values in a specific area are above a certain level.
The SE kernel represents the smooth changes of RSS. For the
temporal kernel, we choose the Matérn kernel kT,Mat since it
includes a large class of kernels and is proven to be very useful
for matching physical processes realistically.

The kernel function (9) can be rewritten as

k((xt, t),(x
′
t, t

′))=(kS,Con(xt,x
′
t)+kS,SE(xt,x

′
t))·kT,Mat(t, t

′),

(10)
kS,Con(xt,x

′
t) = Φ, (11)

kS,SE(xt,x
′
t) = σ2

m exp
(
−∥xt − x′

t∥2/l2
)
, (12)

kT,Mat(t, t
′)=σ2

m

21−v

Γ(v)
(

√
2v∥t−t′∥

l
)vKv(

√
2v∥t−t′∥

l
) (13)

with σ2
m and l being the amplitude and length scale parameters,

respectively, Φ represents a constant. Kv(·) is a modified
Bessel function and Γ(·) is a Gamma function. Moreover, v is
a smoothness parameter of Matérn kernel. Different functions
belonging to the Matérn kernel can be built with varying v.

Fig. 2: HODLR matrix at different levels

B. GP Factorisation

This section introduces a novel approach that enhances the
BO efficiency by integrating the hierarchical off-diagonal low-
rank (HODLR) structure [21] into the GP surrogate model
of the BO framework. The HODLR structure divides recur-
sively the covariance matrix and applies rank-revealing lower-
upper factorisation hierarchically to certain sub-matrices in
the off-diagonal section, while retaining the diagonal parts.
Consequently, a subset of columns, rows, or entries is formed,
which is much quicker to calculate than the entire matrix.
Generally, constructing the HODLR matrix requires a cost of
O
(
n log2(n)

)
. Fig. 2 gives a graphical representation of the

HODLR matrices. A real symmetric matrix Kt ∈ Rnt×nt can
be decomposed to a two-level HODLR matrix:

Kt =

[
Kt,1 U1V

T
1

V1U
T
1 Kt,2

]
, (14)

with the diagonal blocks decomposed into

Kt,1 =

[
K

(2)
t,1 U

(2)
1 V

(2)T

1

V
(2)
1 U

(2)T

1 K
(2)
t,2

]
,

Kt,2 =

[
K

(2)
t,3 U

(2)
2 V

(2)T

2

V
(2)
2 U

(2)T

2 K
(2)
t,4

]
.

(15)

The Kt,1 and Kt,2 are the n/2j×n/2j diagonal block matrices
from the original matrix Kt and U(j), V(j) matrices are
n/2j × r matrices with r ≪ n. j denotes the level of decom-
position, which are 2 in this example, and rank r depends on
the desired accuracy of the low-rank approximation. A higher
rank results in less precision loss and higher computation cost.

Given an HODLR-type factorisation, rapid computation of
the inverse of the entire matrix is allowed via the Sherman-
Morrison-Woodbury formula [14]. This method has a com-
putational complexity of O(n log n) for both solving linear
systems and computing the determinant, satisfying the require-
ments of real-time implementation.

C. Algorithm Overview

The proposed approach reuquires an initial set of data D0

and a GP prior GP0 as the surrogate of the unknown dynamic
function. The initial input data can be randomly sampled from
the search space which is an area of the location x and a period
of time t. The GP is used to construct the AF that leads to
searching for the maximum RSS location over time. Besides,
we introduce a superscript k ∈ {1, 2, · · ·K} to represent
different UAVs, where K is the number of UAVs. In addition,
at any time ti, define the spatial search space as the whole area
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of interest and the temporal search space as t = [ts, ts + γ],
where ts = ti+ψ. A large γ value means a large time interval
for one UAV to decide when to collect a measurement, thereby
reducing the number of measurements when the total search
time is fixed. The proposed algorithm works in an iterative
process, the UAVs are scheduled to collect measurements
and send them to an edge node which then updates GP and
determines new points for UAVs to measure. The proposed
algorithm will terminate after a certain period of time T .

The detailed process is described as Algorithm 1.

Algorithm 1 BO-assisted joint sensor scheduling and tracking

Require: Prior surrogate model GP0, initial data D0, UAV
number K

1: while ti ≤ T do
2: Receive the K RSS measurements
3: Set the time stamp ti = max{t1i , t2i , · · · , tKi }
4: Augment data Di ← Di−1 ∪

{
xk
ti , t

k
i , y

k
ti

}K

k=1
5: Generate the HODLR structure for covariance matrix
6: Update GPi by maximising (7)
7: Set the start time stamp ts ← ti + ψ
8: Update search bound of time interval as t = [ts, ts + γ]
9: Determine {xk

ti+1
}Kk=1 and {tki+1}Kk=1 by sequentially

maximising AF as follows:

{xk
ti+1

, tki+1} = argmax
xt∈X ,t∈t

αk(xt, t)

10: Send the UAVs to measure the RSSs at {xk
ti+1

, ti+1}Kk=1

11: i← i+ 1
12: end while

IV. NUMERICAL RESULTS

A. Simulation Settings

The log-distance path-loss model [22]

yti = y0,ti − η log10(dti) + ϵ, (16)

is used to generate RSS measurements, where y0,ti is a
constant characterising the transmission power at ti with the
unit of dBm. An RSS yti of a target measured by a UAV.
The distance between the target and the UAV at ti is defined
as dti . Sensor distortions and environmental interference are
represented by ϵ, which is assumed to be a zero-mean Gaussian
noise. The proposed algorithm is validated by setting the
standard deviation of the Gaussian noise as one dB. Here
η is the attenuation gain. We tested the proposed approach
in a 400m x 400m area with a target trajectory based on
the constant velocity model and an initial state vector of
[50m, 1m/s, 50m, 1m/s]. Two UAVs are used for tracking,
and two BO-based approaches are implemented with different
factorisation methods. We also study the impact of the level of
HODLR factorisation determined by the block size parameter
(it controls the size of the dense diagonal grey block shown
in Fig. 2). As a general rule, a smaller block size leads to a
higher level of factorisation, which brings faster computation

TABLE I: One-step computational time

γ Factorisation method GP update (sec) AF maximisation (sec)
1st UAV 2nd UAV

γ = 1
HODLR 0.86 0.61 0.62
Cholesky 0.97 0.77 0.77

γ = 2
HODLR 0.29 0.72 0.73
Cholesky 0.49 0.84 0.85

γ = 4
HODLR 0.04 0.79 0.80
Cholesky 0.19 0.96 0.97

at a cost of lower accuracy than the full GP. All the results
are averaged over 100 Monte Carlo simulations.

B. Computational Time

The proposed HODLR factorisation-based BO is compared
to Cholesky factorisation-based BO in terms of computational
time. Changing γ controls measurement size and evaluates
approach efficiency. A large γ value reduces the frequency
of collecting measurements and also means not very frequent
AF maximisation and GP updates, leading to long search
intervals for one-step operation (based on lines 3, 8, and 9 in
Algorithm 1). The average received numbers of measurements
in the three cases are 424, 268 and 162, respectively. To
ensure fairness, we calculate the time required for one-step AF
maximisation and GP update. Table I shows that increasing
γ decreases GP update time, while AF maximisation time
increases due to less efficient grid searching with more grid
points required. The AF maximisation time for each UAV is
presented separately, as it can be done asynchronously. The
proposed HODLR factorisation-based approach outperforms
the Cholesky-based approach in terms of shorter time for both
AF maximisation and GP update. Specifically, the HODLR
factorisation reduces 79% of surrogate model update time
when γ = 4 and up to 21% of AF maximisation time.

C. Tracking Error

The tracking errors of both approaches are presented in
Fig. 3. The proposed approach with HODLR factorisation
achieves slightly higher errors than the Cholesky factorisation
due to a more sparse representation of the covariance matrix.
However, it still performs competitively well as compared to
the Cholesky factorisation. Particularly, the gap between the
two approaches becomes smaller with less training data.

Fig. 3: Tracking error versus γ time step in the BO search (as in Algorithm 1)
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Fig. 4: Tracking error and computational time versus HODLR block size

D. HODLR Factorisation Level

The total computational time and the tracking error affected
by the HODLR factorisation level are presented in Fig. 4.
Here the HODLR block size is changed while γ is fixed to
be one. The implementation of the algorithms was performed
in Python, on a PC with i7-12700h CPU. The results reveal
that although smaller block sizes do incur higher errors, the
algorithm still has efficient computational time. High compu-
tational times at small block sizes are due to the computational
overhead in constructing the HODLR matrix. The results
highlight the importance of choosing the proper HODLR block
size to achieve the best computational efficiency. Noted that
better computational efficiency results could be achieved by
different implementations of the proposed approach.

V. CONCLUSION

This paper proposes a novel joint sensor scheduling and
target tracking approach to send multiple UAVs to track a
moving target using RSS measurements. A spatial-temporal
composite kernel comprised of a constant kernel, a squared
exponential and a Matérn kernel is designed. Then a GP
surrogate model for the latent process of RSS generation is
constructed that varies over time. Particularly, the HODLR fac-
torisation is integrated into the proposed algorithm to improve
its efficiency. Numerical results confirm that the proposed
HODLR factorisation-based BO reduces the running time as
compared to the standard Cholesky factorisation-based BO
while achieving competitive tracking accuracy. Future work
will focus on developing non-myopic strategies to solve the
sensor scheduling problem.
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Abstract—Turbulence is a common phenomenon in the atmo-
sphere and can generate a variety of distortions in an image.
This can cause further image processing tasks to struggle due to
lack of detail in the resulting turbulence affected imagery. It is
therefore useful to attempt to remove such distortions as a post
processing step. However, the development of such algorithms is
difficult due to the complex nature of turbulence data acquisition.
To alleviate these issues, this paper presents the development of
a turbulence simulator that is capable of imparting the effects
of a turbulent atmosphere onto clean images and videos. This
work also provides a large, publicly available dataset that can
be used as a benchmark. The simulator and dataset will be
valuable resources in the field of turbulence mitigation. Indeed,
the simulator allows researchers to simulate specific turbulent
conditions for any application as required; while the dataset
provides the ability to make use of turbulent data without the
expensive time commitment of simulation.

Index Terms—Atmospheric Turbulence, Simulation, Anisopla-
natic, Wave propagation, Dataset

I. INTRODUCTION

Turbulence within the atmosphere is caused by random
perturbations in the refractive index of air [1], which can
cause light to divert from its intended path as it travels.
When incident on a camera sensor, the consequences of these
diversions are angle of arrival fluctuations and phase alter-
ations. The resulting image is therefore degraded by spatially
varied warping and blur. The processing of such an image can
therefore be rather challenging, as the combined warping and
blurring result in a loss of image clarity and high frequency
detail. Therefore, a common post-acquisition step consists
in the attempt to recover such detail [2]–[4]. However, in
order to design such post processing algorithms, example data
is needed. Very often such post processing methods require
not only the turbulence affected images, but also the clean,
turbulent free images as reference. This is especially true
for the case of deep learning approaches, as paired data is
necessary for training purposes. The practical acquisition of
such a dataset however is an extremely difficult task, as the
lack of control over imaging conditions makes the capture of
corresponding ground truth images nearly impossible. Such
ground truth images would need to be acquired when turbu-
lence is not present, likely at a different time of day. The

D.V. acknowledged support from the UK EPSRC and Leonardo UK Ltd,
Edinburgh

(a) (b) (c)

Fig. 1: Example images from simulation. (a) Input Image
(b) C2

n = 0.25x10−15m− 2
3 (c) C2

n = 1.5x10−15m− 2
3

challenge then becomes the spatial alignment of the camera
such that the exact same image is taken.

The ability to simulate the effects of turbulence in soft-
ware is therefore desirable, as any atmospheric conditions
can be evaluated, simulated, and applied to an image. This
paper presents the development and implementation of such
a simulator for generating anisoplanatic turbulent imagery.
Based on the works Schmidt [5] and Hardie et al. [6], the
proposed simulator models the turbulent atmosphere as a series
of phase screens. A point source is then propagated through
the screens to provide a Point Spread Function (PSF), which
describes how the point source has spread throughout the
atmosphere. This is then applied to a clean image to provide
the final turbulent output. The simulator is controlled by
a series of input parameters including propagation distance,
camera aperture, and the strength of the turbulence, where
the turbulence strength is defined by the refractive index
structure parameter, C2

n. Example outputs of the simulator
can be seen in Fig.1. The simulator presented in this paper
was developed in MATLAB and is able to produce turbulent
images as well as videos, where the speed and direction of
the turbulence can also be defined. This work also presents a
novel dataset generated through the proposed simulator. This
dataset is available for use by the general public and will be
a useful resource for future research on turbulence mitigation
algorithms 1.

The remainder of the paper is organised as follows. Section

1All data underpinning this publication are openly available from the Uni-
versity of Strathclyde KnowledgeBase at https://doi.org/10.15129/1adfbe5c-
68f0-49f1-9bad-e64872f9f582.
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II provides related works in the field of turbulence simulation.
Section III-A details the underlying theory of turbulence and
its characterisation. Section III-B then goes into the details of
the simulator, describing the generation of the phase screens
(III-B1) and the propagation process (III-B2). Section III-C
describes the dataset presented with this work, with details
on the simulator settings. Finally, Section IV provides the
conclusion to the paper.

II. RELATED WORKS

When simulating the effects of turbulence, there is a trade-
off between simulation accuracy and processing time. To
ensure accurate simulation, a large number of calculations are
needed, therefore increasing simulation time. Other simulation
methods instead make use of prior knowledge regarding tur-
bulence theory that allows an estimation of image degradation.
These implementations are faster, however they have limited
accuracy. The distortion of an image can be described by

Iout(x, y) = H [Iin(x, y)] + n(x, y) (1)

where Iin and Iout are the clean input and distorted output
images respectively. Here n is additive noise and H[·] is a
function that describes the type of distortion. In the case of
turbulent imagery, the function H[·] can be represented by a
spatially varying warp, as well as a blurring operation [7],
[8]. The simplest method of turbulence simulation can be
achieved by applying (1) as a set of random functions, where
the distortion function can be represented by a random shift
of pixels, and the noise is represented by Gaussian blur [9].
The most common approach to the simulation of turbulence is
that of estimating the PSF caused by a turbulent atmosphere
[7], [10]. This can be done using an optical transfer function
(OTF), which describes how a source of light is affected by
the turbulent atmosphere and camera system [11].

Whilst the theoretical OTF can provide an indication of
a turbulent volume, the most accurate method of depicting
the path of light is by implementing a propagation simulation
[12]. These methods model the atmosphere using a series of
complex planes called phase screens, which represent how
the light wave changes path as it travels [13], [14]. Although
the propagation of a single light wave can be achieved with
minimal computation, the aggregate time required to perform
a propagation for each pixel in an image can result in a
computationally expensive simulation.

As previously described, the practical acquisition of tur-
bulent data is a challenging task. However, by combining
practical acquisition with computer simulation, real data can
be utilised. A popular method of simulation is the work of
Repasi et al. [15], which was able to extract typical distortions
caused by different levels of turbulence. This allows their
simulation method to draw upon real turbulent experience
when processing an image. This method has also been used
in [16], [17]. Computer simulation is not the only method of
recreating turbulence. Multiple works have made use of real
life phenomena and real time photo capture in order to obtain
turbulent data. This includes imaging through a heating vent

[18], gas hobs [3] and hair dryers [19]. Whilst these methods
introduce a form of control over the underlying turbulent
effects, they are not true simulations of turbulence over a long
propagation path and are therefore only a simplistic imitation
of the real effects of turbulence.

Despite the challenges, attempts have been made to produce
a real turbulence dataset, such as the work of Gilles et al. [20],
which formulates ground truth images via a downsampling
and registration process of the pristine image. Anantrasirichai
et al. [3] have collated real data for the purpose of turbulence
mitigation. To overcome the lack of ground truth, a no refer-
ence image quality metric is used to evaluate the performance
of their methods. Turbulent data can also be acquired for
the purpose of atmosphere analysis, such as in [1], where
scintillometers are used to provide a reference value of C2

n

for the current atmosphere.

III. TURBULENCE SIMULATION

A. Turbulence Theory

Any viscous fluid can be categorised into one of two states
of motion: laminar or turbulent. In the case of laminar flow,
no mixing of the fluid occurs, resulting in a predictable flow
that has known characteristics. The flow becomes turbulent
when mixing occurs, causing the flow to break into subflows
called turbulent eddies, where any predictable characteristics
are therefore lost [21]. The point at which a fluid can transition
from laminar to turbulent flow can be determined by the
Reynolds number, Re, defined as

Re =
V l

v

where V , l and v are the velocity, length and kinematic vis-
cosity of the fluid respectively. At low values of the Reynolds
number, fluids tend towards laminar flow, whilst high Reynolds
numbers characterise turbulent flow [21]. By considering the
atmosphere as a fluid, the same principles can be applied in
the case of turbulence modelling.

Once a fluid transitions from laminar into turbulent flow,
the resulting turbulent subflows can then be described as an
energy cascade [22]. This begins with large eddies forming
due to an injection of energy; these then proceed to break up
into smaller eddies and continue to reduce until the eddies
dissipate completely as heat. This cascade begins at a size L0

and reduces in size to l0. These two values are known as the
inner and outer scales of turbulence. The eddies that lie within
these two scales form what is known as the ‘inertial subrange’
[21]. Within this inertial subrange, assumptions can be made
with regard to the statistics of the atmospheric field, which
led Kolmogorov to build his statistical model of turbulence
[23]. By using these assumptions and dimensional analysis,
Kolmogorov derived a power spectral density (PSD) for the
changes in refractive index in air:

ΦK
n (κ) = 0.033C2

nκ
−11/3, 1/L0 ≪ κ ≪ 1/l0 (2)

where κ is the angular spatial frequency in rad/m. Typical
values of C2

n range from 1 × 10−16 (weak) to 1 × 10−13
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Fig. 2: Illustration of a single propagation. The point source
is propagated through each phase screen until the

observation plane is reached. The lens operation then
converts the complex plane into a Point Spread Function.

(strong). Other models for the refractive PSD introduce ad-
ditional control parameters to better align the theoretical and
analytical experiments [5]. Such a model is the modified Von
Karman PSD, which is the PSD used for this simulator. It is
evaluated as

ΦmvK
ϕi

(f) =
0.023e−f2/f2

m

r
5/3
0i

(f2 + f2
0 )

11/6
(3)

where f is the angular spatial frequency in cycles/m. fm =
5.92/2πl0 and f0 = 1/L0. Unlike (2), this is evaluated with
respect to the Fried parameter of the ith screen, r0i , which is
a measure of optical transmission quality [24].

B. Simulator Model

To simulate the effects of a turbulent atmosphere on images
and videos, the atmosphere must first be modelled in 3D space.
A point source can then be propagated from the source plane,
along a distance L until it reaches the camera sensor (Obser-
vation Plane). To represent a volume of turbulent atmosphere,
it is common to treat the atmosphere as a series of discrete
layers [5], where each layer is represented by a 2 dimensional
phase screen. The result of propagation through these phase
screens is a complex matrix at the observation plane. Using
a lens operation, this complex plane is transformed into a
single PSF [6], which can then be applied to an image
via convolution. This process of propagation is illustrated in
Fig.2. The propagation of a single point source through phase
screens is known as isoplanatic simulation. In such a case,
the resultant PSF is applied to each pixel within the source
image (i.e. spatially invariant). This therefore assumes that
each pixel in the image has passed through the same volume
of turbulence (or that the turbulence is identical in all points
in the 3D space). This however is not the case in real imagery
as each source of light traces a different path through the
atmosphere. The modelling of such an environment is known
as anisoplanatic simulation, in which each pixel has a specific
PSF based on its optical path through the atmosphere. To
achieve this, the phase screens are generated at an extended
size, as seen in Fig.3. Once the trajectory of a pixel (pencil ray)

Fig. 3: Geometry of 3D space in which phase screens are
situated. For each pixel, a pencil ray is traced towards the

observation plane. The intersections of the pencil rays
correspond to the centre points for the cropped screens used

for propagation.

is traced through 3D space, the intersections with the phase
screens are taken as centre points for a cropping operation.
The cropped screens are then used for propagation, as in
Fig.2. For the simulation of video sequences, the phase screens
are again generated to an extended size. The video is then
simulated one frame at a time, where the phase screens are
translated laterally, to simulate turbulence motion, by a number
of samples in a given direction for each new frame, resulting
in frames that are temporally correlated.

In order to sample the planes such that the simulation is
accurate, the actual physical dimensions of the simulation are
used. In the case of this simulator, the size of the planes is
related to the diameter D of the camera aperture. From this,
the width X of the point source and cropped phase screens is
defined as X = sD = ∆xN , where s is a scaling parameter,
∆x is the grid spacing and N is the sample count. ∆x is
calculated such that it is able to accurately represent each
screen without undersampling. To ensure this, the Voel critical
sampling rule is applied [5], as

∆x =

(
λL

N

) 1
2

(4)

allowing the sample count N to be evaluated as

N =
X2

λL
(5)

The scaling parameter s is chosen such that the resulting value
of N is a power of two and the screen width is at least 4 times
that of the aperture diameter. The image at the source plane
is sampled according to Nyquist as δo = λL/(2D) [6].

1) Generation of Phase Screens: Each phase screen imparts
an optical phase change to the incoming wave. Assuming that
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this phase is a Fourier transformable function, it can be written
as a Fourier series [5] as

ϕ(x, y) =
∞∑

n=−∞

∞∑
m=−∞

ĉn,mei2π(fxnx+fymy)

where fxn and fym are the spatial frequencies. ĉn,m is the
random realisation of the Fourier series coefficients cn,m,
which are multiplied by a Gaussian random variable with zero
mean and unit variance as

ĉn,m = N (fxn
, fym

| 0, 1) cn,m
The values of cn,m are generated from the modified von
Karman PSD (3) as

cn,m =
√
Φϕi

(fxn
, fym

)∆f

where the frequency spacing is ∆f = 1/(N∆)x. For the
evaluation of (3), the values of r0i are first calculated using
the optimisation method described in [6]. The limitation of this
method is that of sampling the modified von Karman PSD at
∆f , as most of the power lies at the low spatial frequencies.
To access these frequencies, a larger spatial sampling rate,
∆x, would be required. To overcome this, more phase screens
are generated at subharmonics of ∆f (∆fp = ∆f/3p). These
are then combined with the base screen, resulting in accurate
phase representations of the turbulent atmosphere.

In the case of anisoplanatic simulation, (4) and (5) are
evaluated with respect to a single propagation, resulting in a
cropped screen size of X . The extended screens have a width
of X̃i = ∆xÑi, where Ñi is evaluated based on the position
of the screen along the propagation path, the largest of which
(i.e. closest to the source plane) is sampled such that it is
N samples larger than the source image (sampled at δo) for
the accommodation of the corner pencil rays. Note that the
PSDs for these extended screens are sampled at a frequency
of ∆f = 1/∆xÑ . An example phase screen can be seen in
Fig.4a.

2) Propagation and Image Generation: The point source
used for propagation is modelled as a 2D Gaussian windowed
sinc function [5], defined as

Upt (x, y) = λLα2e−i k
2L (x

2+y2)sinc [αx, αy] e−
α2

16 (x
2+y2)

where α = (4D)/(λL). This source is designed such that if
propagated through a turbulent free atmosphere, the result is a
4Dx4D patch of uniform amplitude on the observation plane.

Split-step propagation of the point source is performed using
the Fresnel diffraction equation; for the purposes of this paper,
the derivation of this equation is omitted, and the reader is
redirected to [5]. This equation begins with the point source
and propagates it to the first phase screen, at which point
the phase is altered as defined. This process is then repeated
until the observation plane is reached. This is known as split-
step propagation. An attenuating border is also introduced
to the phase screens, in order to reduce any signal energy
that is tending towards the simulation boundary. The split-
step propagation produces a complex field U0 (x, y) at the
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Fig. 4: (a) Example Modified Von Karman Phase Screen with
subharmonics (b) PSF after propagation and lens functions.

observation plane. This complex field represents a spherical
wave with a quadratic phase. In order to simulate the lens
function, this spherical wave first needs to be converted into
a plane wave. This is done using a collimation operation
[6]. This stage also includes a pupil function, a (x, y), which
masks the complex plane according to the camera aperture,
D. These two operations provide a complex plane, p (x, y),
which represents the amplitude distribution behind the lens,
and is given as

p (x, y) = a (x, y)U0 (x, y) exp

[
−iπ

(
x2 + y2

)
λR

]
The final PSF can then be found using Fourier optics principles
[25] as

h(x, y) =
(
|FT{p(x, y)}|2

)∣∣
u= x

λl ,v=
y
λl

which is then resampled to Nyquist sample spacing [6], and
normalised to have a sum of 1, where FT{·} denotes the
forward fourier transform. An example PSF is shown in Fig.
4b. PSFs are obtained for each pixel in the image, allowing
the final turbulent image to then be formulated as

y [m,n] =
∑
j

∑
i

x [i, j] · hm,n [m− i, n− j]

where x is the clean input image.
A performance gain for the simulation process is possible

at this stage. In fact, due to the nature of the pencil rays, a
pixel will have a very similar path through the atmosphere as
its immediate neighbours. Therefore, a skip parameter allows
the pencil rays to be traced using a sparser grid of pixels. The
PSFs of the remaining pixels are then estimated using bilinear
interpolation.

C. Dataset Generation

The dataset generated for this work makes use of the
Places dataset [26]. This is a dataset of 1,469,737 scene
images covering 205 separate categories, of which 31 have
been chosen as categories that could be prone to turbulent
interference, such as outdoor scenes. By isolating the data to
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TABLE I: Simulator settings for provided dataset.

Description Dataset Values

Camera aperture diameter D = 0.1m
Propagation distance L = 5km

Number of phase screens nscr = 8
Inner scale l0 = 0.01m
Outer Scale L0 = 300m
Pixel Skip skip = 4

wavelength of light λ = 525× 10−9

Image Size Image Pixels = 257× 257
Video frames frame count = 15

No. of Subharmonics Sub Count = 2
Subharmonic grid size Nsubharm = 4

TABLE II: Dataset variables.

Variable Values

C2
n [m−2/3] (0.25, 0.6525, 0.875, 1.1875, 1.5)× 10−15

Turbulence Speed 1, 2, 3, 4
Turbulence Direction �� � � ��� �

these categories, a total of 148,884 images were selected for
the simulation process.

The simulation parameters used for the resultant dataset
are detailed in Table I, where the resulting grid spacing and
sample count of the cropped phase screens were ∆x = 0.0064,
N = 64. To ensure a comprehensive dataset of diverse data,
three variables were used during the simulation process. For
each video, the values of C2

n, turbulence speed and turbulence
direction were randomly selected from a predefined list of
values, shown in Table II. Such values allow for a total of
160 different potential turbulent simulations within the dataset.
The random choice is made such that the final dataset has a
uniform distribution of these 160 different classes. The range
of values for the atmospheric structure parameter C2

n is chosen
such that a range of low to high turbulence is represented, the
two extremes of which are shown in Fig.1. The speed and
direction of the turbulence are given as an integer value and
an angle of movement. Each details the nature of movement
of the enlarged phase screens in between each frame of the
simulation. The speed denotes how many pixels the screens
are to move, whilst the direction provides the angle in which
the screens should translate. This can result in slow to fast
turbulence in all the cardinal directions as well as diagonals.

IV. CONCLUSION

This paper has presented the details of an accurate method
of turbulence simulation for optical images. This simulator
is capable of imparting the realistic effects of turbulence onto
datasets of clean images. Such data can then be further utilised
in the development of turbulence mitigation algorithms. This
paper also presents a dataset that is available for public use,
allowing the slow process of propagation simulation to be
avoided.
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Abstract—Rapid and accurate estimation of hazardous mate-
rial release parameters, including source location, release time,
and quantity of material released, is crucial for protecting assets
and facilitating timely and effective emergency response. In
this paper, we present a first artificial neural network (ANN)
approach for end-to-end source term estimation (STE) using
time-series of multispectral satellite images. The architecture
consists of two successive ANNs. The first-stage ANN estimates
the hazardous material release rate over time, producing a
3D concentration map, while the second-stage ANN utilizes
the generated concentration map to estimate the 2D source
location, release time, and easterly and northerly wind speeds.
By leveraging the inherent nonlinearity of ANNs and advances
in parallel computing, our proposed method aims to eventually
overcome the limitations of existing optimization and Bayesian
inference techniques in handling the nonlinear STE problem.
In this preliminary study, we validate the performance of our
approach on a simulated dataset, demonstrating its potential
for enhancing the accuracy and speed of STE in real-world
applications.

Index Terms—source term estimation, artificial neural net-
works

I. INTRODUCTION

The increasing threat of hazardous material releases result-
ing from accidents, terrorism [1], or natural disasters, such
as the Bhopal gas leak accident [2], the Fukushima nuclear
accident [3], and the Eyjafjallajökull volcanic eruption [4],
highlights the crucial need for quick and precise estimation of
the emission source location, time of release, and quantity of
material released. This information is vital to protect public
health and enable effective emergency response. Atmospheric
dispersion simulation (ADS) models are usually employed
to predict the spread of contaminants, assisting in efficient
response and post-emergency assessment. Researchers have
developed numerous ADS modeling methods, with the Gaus-
sian model being a typical and efficient tool for atmospheric
dispersion prediction due to its simple expression [5]. The
Gaussian dispersion models (such as the Gaussian puff model
and the Gaussian plume model) are particularly suitable for
emergency management because of their simplicity and effi-
ciency [6]. Accurate forecasting requires several input vari-
ables for the model, including meteorological data, release

This work was supported by the UK MOD University Defence Research
Collaboration (UDRC) in Signal Processing.

strength, and location. While meteorological data are generally
available from local weather stations or global sources, the
strength, location, and release timing often remain unknown
and must be inferred from relevant sensor measurements. The
development of methods to address this challenge is referred
to as inverse dispersion modeling or source term estimation
(STE). Incorporating meteorological variables as parameters
can account for spatial variations in meteorological conditions,
leading to a more accurate overall source estimation. Most
STE problems consider individual sensors on the ground or
sparse sensor networks. This requires the deployment of assets
in the region of interest which may not be possible in remote
locations. In this paper, we adopt alternative approach where
STE is solved using multi/hyperspectral satellite images which
are becoming increasingly available. This, however, assumes
that the source of interest is observable using an imaging
modality.

STE presents computational challenges due to the intrinsi-
cally nonlinear nature of radionuclide diffusion processes in
the atmosphere [7]. Two primary approaches are employed
to tackle this problem: optimization methods [8]–[15] and
probabilistic techniques based on Bayesian inference [16]–
[23]. Regardless of the approach, the inferred source pa-
rameters are input into a forward ADS model to generate
predicted concentrations, which are then compared to observed
data using a data fidelity term or likelihood function. The
primary objective of these methods is to identify the optimal
or most probable match between the predicted and observed
data [24]. Both sets of approaches have demonstrated promis-
ing results in simulations; however, it has been found that
there is substantial potential for improvement when applied
to experimental data [24], [25]. Bayesian methods offer the
advantage of generating a final estimate with confidence
levels and incorporating prior information into the algorithm
via probability distributions. This allows for the potential
accounting of inaccuracies due to modeling errors or sensor
noise, although perfect characterization of these distributions
may be challenging, especially in real-world scenarios. On the
other hand, optimization methods yield a single point estimate
for the source parameters but do not provide confidence
intervals for prior information or the final estimate. Despite
this drawback, optimization methods are typically less com-
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Fig. 1: Schematic of the first-stage of the proposed ANN pipeline
. Arrows of different colors indicate various types of neural network layers, as explained by the color-coding in the legend

above.

putationally demanding and may converge more rapidly than
Bayesian techniques. Furthermore, they benefit from requiring
little or no prior information, although the availability of such
information could lead to improved performance.

In recent years, artificial neural networks (ANNs) have
emerged as a promising approach to enhance STE [6], [7],
[26]–[30]. ANNs can capture complex, nonlinear relationships
between inputs and outputs, making them suitable for tackling
the inherent nonlinearities of the STE problem. Additionally,
deep learning methods can benefit from large amounts of train-
ing data, which can lead to more accurate and robust models.
Furthermore, advances in parallel computing and hardware
accelerators, such as GPUs, have enabled ANNs to achieve
faster convergence and real-time performance, making them
an attractive option for STE in critical applications. However,
existing ANN-based approaches for STE are designed to
estimate a subset of the source term parameters such as the
release rate [6], [7], [27], [28], [30], the release rate and release
time [26], or the source 2D coordinates [29], while the other
parameters are assumed known.

In this paper, we introduce a two-stage ANN pipeline de-
signed for estimating source term parameters from time-series
hyperspectral satellite images. The first stage of the pipeline
focuses on calculating the hazardous material release rate
over time, subsequently generating a 3D concentration map
derived from the time-series hyperspectral satellite images.
The second stage utilizes the 3D concentration map to estimate
the 2D source location, the release time, along with the easterly
and northerly wind speeds. The effectiveness of the proposed
approach is thoroughly validated using a simulated dataset.
It is important to highlight that in this study, we assume an
instantaneous 2D release simulated utilizing the Gaussian puff
model, which is adapted from [14].

The remainder of this paper is organized as follows. In
Section II, we introduce the two-stage ANN pipeline adopted

in this work for solving the STE problem. The experimental
setup and results are discussed in Section III, and finally,
we conclude with the key findings and future directions in
Section IV.

II. METHODOLOGY

Unlike conventional Bayesian and optimization algorithms
commonly employed in STE, ANNs offer several significant
benefits that make them a more attractive solution for rapid
response scenarios. One key advantage is their ability to learn
highly non-linear dispersion models directly from training
data, eliminating the need for an analytical expression of
the forward model, i.e., the cloud formation/evolution model.
Moreover, a well-trained ANN can compute predictions in a
fraction of a second, providing high computational efficiency
that is crucial in time-sensitive situations.

Our objective in this preliminary study is to accurately
estimate the following source parameters using ANNs: re-
lease rate, 2D spatial source location, release time, and both
easterly and northerly wind speeds. The direct prediction of
these parameters from hyperspectral satellite images poses a
considerable challenge, given the images encompass a diverse
range of geographical areas. To address this, we adopt a two-
stage strategy. In the first stage, we extract the release rates
of hazardous materials from time-series hyperspectral satellite
images, generating a 3D concentration map. Subsequently, in
the second stage, we utilize the concentration map to estimate
the source location, release time, and the two wind speed
components. This novel method demonstrates the potential
of ANNs to enhance STE in emergency situations, ultimately
aiding in more efficient response and mitigation efforts.

A. Two-stage ANN pipeline

The first-stage ANN takes as input a time-series of hyper-
spectral satellite images with dimensions T × M × N × H ,
containing hazardous material dispersion. Here, T denotes
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the temporal dimension, M and N represent the two spatial
dimensions, and H corresponds to the channel dimension (i.e,
H = 3 for RGB but H can be larger for multi/hyperspectral
images). The output is a 3D cloud with dimensions T×M×N ,
which conveys the spatial concentration of hazardous material
over time. As illustrated in Fig. 1, the architecture of the first-
stage ANN follows a 3D U-Net design, comprising an encoder
and a decoder with skip connections [31], [32]. The encoder
consists of four 3D convolutional layers, with the number of
feature channels set at 32, 64, 128, and 128 for each layer,
respectively. The first three convolutional layers are followed
by a 3D max-pooling operation for down-sampling, with pool
sizes of (2×2×2) after the first two layers and (1×2×2) after
the third layer. The decoder features three levels. Each level
begins with 3D up-sampling of the feature map, using a size
of (1×2×2) for the first step and (2×2×2) for the remaining
two steps. Every up-sampling operation is succeeded by a 3D
convolution, with the number of feature channels set to 128,
64, and 32, respectively. To enable localization, the output
of each convolution is concatenated with the corresponding
feature map from the encoder (skip connection). A subsequent
3D convolutional layer is then employed to learn to assemble
a more precise output based on the concatenated features,
with the number of feature channels set to 64, 32, and 16,
respectively. All convolutional layers utilize a kernel size of
(3 × 3 × 3) and a rectified linear unit (ReLU) activation
function. Finally, a (1 × 1 × 1) convolution maps each 16-
component feature vector to the desired concentration rate. It
is important to note that the first-stage ANN can be modified to
accommodate more complex observational phenomena, such
as changes in illumination or registration errors. Ultimately, it
could be integrated as a module into the second-stage ANN.

The second-stage ANN input is the first-stage output, specif-
ically, the 3D extracted cloud with dimensions T ×M ×N .

The output of this stage consists of the source term pa-
rameters, including release time, the 2D spatial position of
the source, and the easterly and northerly wind speeds. As
depicted in Fig. 2, the architecture of the second-stage ANN
commences with an encoder that shares the same design as the
encoder in the first-stage. After the encoder, the two spatial di-
mensions and the channel dimension are flattened into a single
feature dimension, while maintaining the temporal dimension.
A Long Short-Term Memory (LSTM) layer containing 2048
units is employed to capture global temporal information.
Subsequently, three additional LSTM layers, each consisting
of 64 units, are utilized to capture the release time information,
source coordinates information, and wind speed information,
respectively. The number of LSTM units have been obtained
through cross-validation. Finally, three dense layers are used
to predict the release time, the 2D spatial coordinates of the
release source, and the 2D components of the wind speed.

It is worth noting that the proposed architecture is highly
adaptable and can accommodate time-series hyperspectral
satellite images of any dimensions T × M × N × H . This
flexibility allows the model to process a wide range of input
sizes, making it suitable for various applications and scenarios.

Fig. 2: Schematic of the second-stage of the proposed ANN
pipeline. Arrows of different colors indicate various types of
neural network layers, as explained by the color-coding in the
legend above. The encoder has the same architecture as the
encoder of the first-stage with output size (T4 ×

M
8 × N

8 ×128).

B. Two-stage ANN training
The two stages of the proposed ANN pipeline were trained

sequentially, with the second-stage ANN utilizing the extracted
3D concentration map generated by the first-stage ANN.
More precisely, we first trained the first-stage ANN and then
the second-stage ANN by considering the full pipeline and
freezing the first-stage ANN. Both ANNs were trained for
100 epochs using the Adam optimizer [33], with a learning
rate of 10−3 and a batch size of 30.

The loss function employed for this process is the mean
squared error (MSE) loss. In the first branch, the MSE loss
is calculated between the true concentration cloud and the
predicted cloud, while in the second branch, the MSE loss
is determined between the true source term parameters and
the predicted parameters. This approach ensures the optimiza-
tion of both branches for accurate and effective source term
estimation.

III. SIMULATIONS AND RESULTS

An essential aspect of the proposed ANN approach is data
preparation, which involves the creation of training and testing
datasets. We utilize 320 RGB satellite images with dimensions
968 × 937 × 3 and a 4 m resolution from the Pleiades ESA
archive [34]. It is worth noting that in this study we use H = 3
(RGB images) for the proof of principle and computational
concerns. However, H can be larger for multi/hyperspectral
images. To augment the dataset size, we randomly crop 10
sections of size 128×128×3 from each high-resolution image,
resulting in a total of 3200 satellite images. Of these, 3000
images are designated for training, while the remaining 200
are allocated for testing.

To simulate instantaneous 2D release of hazardous material
over time, we employ the 2D Gaussian puff model, which is
adapted from [14] and takes the following form:

c(x, y, t) =
qs

4π
√
σxσy

exp

[
− 0.25

(t− ts)
×(

(x− xs − ue(t− ts))2

σx
+

(y − ys − ve(t− ts))2

σy

)]
, (1)
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where qs is the source mass in kg, ts is the release time, xs

and ys are the spatial coordinates of the source, ue and ve
are the easterly and northerly wind speed components, and
σx and σy are the dispersion coefficients. In this context,
x and y correspond to a 2D grid with a range of [-63,
64] pixels, covering a range of 512 × 512 m2. We set the
dispersion coefficients to σx = 9 and σy = 4, which control
the dispersion profile. The time t is an integer number in the
range [1, T] frames. Here, we assume T = 20 frames and the
time between two successive frames is 2 sec.

For each of the 3200 RGB images, we generate a random
concentration map over time following (1). We randomly
select the emission source coordinates, xs and ys, within the
[-50, 50] pixel range, ensuring the source remains within the
field of view. The release time, ts, is randomly chosen within
the [1, 20] frame range. The easterly and northerly wind com-
ponents, ue and ve, are randomly determined within the [-2,
2] pixel range, corresponding to 0 mps, 2 mps, or 4 mps wind
speeds. To add the concentration map to the normalised [0, 1]
range RGB image, we simulate a mostly green RGB spectrum
for the source (Fig. 3), using the same spectrum across the
dataset, and set the source mass qs to 50 kg for a peak
source intensity of 0.66 in the green channel. We assume static
images over time. Following this, we simulate 3200 cubes of
hazardous material dispersion, each with 20× 128× 128× 3
dimensions, where T = 20,M = N = 128, and H = 3.

Recall that the first-stage ANN processes a time-series of
RGB satellite images containing hazardous material dispersion
and generates a 3D cloud representing the spatial concentration
of the hazardous material over time. To assess the performance
of the first-stage ANN, we present three time frames of one
of the testing emission scenarios in Fig. 3. For this particular
scenario, the release time, ts, is frame 3. As shown in Fig. 3
(top row), the concentration map is empty at frame t = 1
since there is no emission. At frame t = ts = 3, the ANN
successfully extracts the concentration map from the RBG
satellite image. Moreover, the model effectively captures the
concentration map’s evolution over time, as depicted in Fig. 3
(bottom row). Notably, the model can differentiate between the
hazardous material release and clouds in the sky, suggesting
that the proposed approach is robust under adverse weather
conditions. The average MSE between the predicted and true
clouds over the 200 testing emission scenarios is 1 × 10−6,
which demonstrates the high fidelity of the ANN approach.

To assess the performance of the second-stage ANN, which
processes the extracted 3D concentration map and generates
the source term parameters, we present the average MSE
between the estimated source parameters and the true values
over the testing dataset of 200 emission scenarios in Table I.
The results demonstrate that the release time is predicted
effectively, with an average MSE of 0.09 frames, indicating
the model’s efficiency for emergency response applications.
Additionally, the 2D spatial coordinates of the emission source
are predicted with high accuracy, as evidenced by an aver-
age MSE of approximately 1 pixel. Lastly, the easterly and
northerly wind speed components are also estimated with high

precision, with the average MSE being less than half a pixel.
These results underscore the effectiveness and reliability of the
second-stage ANN in determining the source term parameters.

Fig. 3: Estimated concentration maps over time (right panels)
obtained from the corresponding RGB satellite images (left
panels) using the first-stage ANN. Displayed from top to
bottom are the results for frames 1, 3, and 20, with the release
time, ts, set at frame 3.

TABLE I: Average MSE results between the predicted source
term parameters from the second-stage ANN and the true
values for the testing dataset of 200 emission scenarios.

source term parameter MSE
xs 1.16± 2.04 (pixels)
ys 0.99± 1.67 (pixels)
ts 0.09± 0.15 (frames)
ue 0.4± 1.52 (pixels)
ve 0.42± 1.65 (pixels)

IV. CONCLUSIONS

In conclusion, this study presents a novel two-stage ANN
pipeline for source term estimation (STE) using time-series
multispectral satellite images, addressing the inherent non-
linearity of the problem. By harnessing the power of ANNs
and advances in parallel computing, the proposed approach
offers a promising solution for rapid and precise estimation
of hazardous material release parameters, which is vital for
public health protection and effective emergency response
management. We have not conducted a comparison of our
proposed method with other STE methods due to the challenge
of designing a fair comparison. However, this is an important
aspect for future work. To improve our pipeline for real-world
applications, several areas require further investigation and
improvement. Conducting an uncertainty analysis is a crucial
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step to evaluate the pipeline’s reliability. The performance
can be significantly enhanced by refining the encoder-decoder
architecture, possibly by incorporating a Variational Autoen-
coder (VAE) architecture. It’s also important to assess how
our pipeline performs with irregularly timed and misregistered
images, to improve the detection of faint clouds in the imagery,
and to work on more realistic data simulations. Reevaluating
the training approach for the artificial neural networks (ANNs)
is another area worth considering. Instead of training the
two-stage ANNs separately, exploring an end-to-end training
approach or merging the two successive ANNs into a single
network could be beneficial.
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[32] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3d u-net: learning dense volumetric segmentation from
sparse annotation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2016: 19th International Conference, Athens,
Greece, October 17-21, 2016, Proceedings, Part II 19. Springer, 2016,
pp. 424–432.

[33] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic gradient
descent,” in ICLR, 2015, pp. 1–15.

[34] E. S. Agency, “Pleiades.” [Online]. Available:
https://earth.esa.int/eogateway/missions/pleiades

75



Random Sampling for Robust Detection of Data
modulated LFM Waveforms

Kaiyu Zhang, Fraser K. Coutts, and John Thompson
Institute for Digital Communications, University of Edinburgh, Edinburgh, EH9 3FG, UK

Email: Kaiyu.Zhang@ed.ac.uk

Abstract—Integrated sensing and communication (ISAC)
waveforms have emerged as a prominent area of investigation for
the next generation of communications. The joint communication
and radar application is one significant use case for the ISAC
waveform. In this paper, receiver detection of a phase shift
keying modulated linear frequency modulation (LFM) waveform
is considered as an example ISAC waveform signal processing
task. The non-coherent discrete chirp-Fourier transform (NC-
DCFT) method is discussed for detecting the parameters of
these waveforms in a blind system with time synchronisation
errors. Furthermore, the random sampling process (RSP) is
proposed to counteract the effect of time synchronisation errors.
The simulations show for the NC-DCFT method with the RSP
performs well when the SNR is over −10 dB even in the present
of time synchronisation errors.

I. INTRODUCTION

Following the development of the 5G communication sys-
tem, research towards the next phase of 5G and 6G tech-
nologies has attracted substantial interest, and has revealed
a desire to tackle specific applications, including sensing
tasks [1]. Furthermore, [2] elaborates the applications and the
approaches of integrated sensing and communications (ISAC)
in 6G communications such as remote sensing, simultaneous
localisation and mapping and area imaging. Joint communi-
cation and radar (JCR) sensing [3] is one of the applications
of ISAC waveform enabling both a communication task and
radar function simultaneously. Research in [4] has introduced
two research approaches to design JCR waveforms that satisfy
radar-communication coexistence (RCC) and dual-functional
radar-communication (DFRC) system requirements.

As a general ISAC waveform, research in [5] discusses
biphase codes and polyphase codes for the data design in
the phase-modulated waveforms. Furthermore, as one of the
traditional radar waveforms, the linear frequency modulation
(LFM) waveform is discussed in [6] and [7]. In some DFRC
systems [8], the waveform is implemented to form the data
modulated LFM waveform. Then, separate receivers are de-
signed for both the radar function and the communication
task separately. Furthermore, [6] and [7] discuss the signif-
icance of parameter estimation for the LFM waveforms in
the radar system to capture the distance and velocity of the
target. Therefore, [9] proposes the non-coherent discrete chirp-
Fourier transform (NC-DCFT) method to estimate the chirp
frequency and the offset frequency for the data modulated
LFM waveform. However, due to real world limitations, the
receiver may may exhibit deteriorated performance due to syn-
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Fig. 1. System Model.

chronisation errors. As an alternative approach to counteract
the effect of the synchronisation errors, this paper discusses
the implementation of the NC-DCFT method and proposes the
random sampling process (RSP).

The novel contributions of this paper are as follows. This
paper discusses the implementation of the NC-DCFT method
for the multiple-phase shift keying (M-PSK) modulated LFM
waveform and proposes the RSP to counteract the adverse
effect of the synchronisation. Firstly, a RSP is proposed in
the NC-DCFT method for a blind receiver system when the
symbol rate is unknown. Secondly, the RSP is applied to a
scenario where synchronisation errors are present to improve
the robustness of the NC-DCFT method.

The layout of this paper is as follows: Section II presents
the system model of this paper; Section III introduces the NC-
DCFT method and its application for the data modulated LFM
waveform; Section IV elaborates the RSP and the inaccurate
synchronisation scenario for the NC-DCFT method; in Section
V, simulation results are shown to compare the normalised
mean squared error (NMSE) performance for scenarios with
inaccurate symbol rates and various random sampling meth-
ods, and Section VI provides conclusions to the paper.

II. SYSTEM MODEL

In this section, the system model, the data modulated LFM
waveform, and the received waveform are introduced as shown
in Fig. 1. The complex LFM waveform r(t) in Fig. 1 at time
t during the transmission period [0, T ] is given by

r(t) = exp(j(πflt
2 + 2πfkt)), (1)

where j is
√
−1, fl represents the chirp frequency, and fk

denotes the offset frequency. The quadrature phase shift keying
(QPSK) symbol s(t) is expressed as

s(t) = exp(j(2ι− 1)π/4) , (2)
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Fig. 2. Illustration of the NC-DCFT method when Ns = 10.

where ι ∈ {0, 1, 2, 3}. When the symbol rate is Rs symbols
per second and the sample frequency is fs, then the number
of symbols to be transmitted is Ns = T × Rs, the total data
record size is Nc = T × fs, and the oversampling rate is
No = fs/Rs. The data symbols s[n] contain Ns samples
obtained by sampling s(t). Subsequently, the root raised-
cosine (RRC) filter h(t) from [10] is applied to s[n] to limit the
signal bandwidth and to attenuate the intersymbol interference.
The pulse shape h[n] is characterised by a roll-off factor β and
a spanning period of Nr symbols and TR period, resulting in
(Nr ×No+1) samples for h[n]. Correspondingly, the symbol
group u[n] to be transmitted is given by

u[n] = h[n] ∗ s[n] , (3)

where ∗ represents the convolution operator and the size of
u[n] is (Nc + Nr × No). The transmission period [0, T ]
for r(t) is modified into [−TR/2, TR/2 + T ] for r(t) in
(1) to compatible with u[n]. Then the data modulated LFM
waveform p[n] to be transmitted shown in Fig. 1 is formed as

p[n] = u[n]r[n] , (4)

where p[n] comprises (Nc + Nr × No) samples. When the
channel is subject to additive white Gaussian noise (AWGN),
the received waveform y[n] is denoted as

y[n] = p[n] + w[n] , (5)

where the size of y[n] and w[n] are (Nc + Nr × No) and
w[n] is AWGN distributed as CN (0, σ2) and σ2 is the power
of the AWGN. The signal-to-noise ratio (SNR) in this paper
is defined as (E(p[n])2/σ2), where E[·] is the expectation
operation. Prior to processing, the receiver truncates the first
and last (Nr × No)/2 samples in y[n] denoted as ȳ[n] with
Nc samples. As shown in Fig. 1, the symbol rate is known or
is estimated by a suitable algorithm, e.g. [11]. Subsequently,
we assume the receiver has synchronised to the start of the
chirp waveform, except for some small timing error.

III. THE NON-COHERENT DCFT METHOD

To estimate the parameters of the data modulated waveform,
the NC-DCFT method and relevant parameter recovery steps
are proposed in the [9] and discussed in this section.

When the receiver has the prior knowledge on the potential
detection range of fl and fk, these ranges are set for fl and

fk as [fmin
l , fmax

l ] and [fmin
k , fmax

k ]. The coefficients a, c for
fl, and b, d for fk are defined for the K length NC-DCFT as

a =
K(fmax

l − fmin
l )

2f2
s (K − 1)

, c =
Kfmin

l

2f2
s

, (6)

b =
K(fmax

k − fmin
k )

fs(K − 1)
, d =

Kfmin
k

fs
. (7)

Through these coefficients, the size K NC-DCFT is defined
in [9] as

X[l, k] =
1√
N

M∑
i=1

∥
mi+ni−1∑
n=mi

x[n]W
(al+c)n2+(bk+d)n
K ∥2 , (8)

where ∥·∥2 is the L2-norm operator, WK = exp(−2πj/K) is
a twiddle factor, l and k are integers in the range [0,K − 1],
M is the number of symbols in the time domain signal x[n],
mi is the initial sample number and ni, which is usually set to
a constant in [9], is the number of samples for the ith symbol
block in x[n]. Through the output matrix X, the corresponding
coordinate (l̃, k̃) is obtained when

X[l̃, k̃] = maxX[l, k] l, k = 0, . . . ,K − 1. (9)

The values of estimated results for fl and fk, f̃l and f̃k, are
therefore expressed as

f̃l =
1

K
2f2

s (al̃ + c) , f̃k =
1

K
fs(bk̃ + d) . (10)

In the system model of this paper as shown in Fig. 1, the
received signal ȳ[n] is the resource signal whose parameters
are to be estimated. Thus, ȳ[n] is the input x[n] in (8), and
each element Y[l, k] in the output NC-DCFT matrix Y is

Y[l, k] =
1√
Nc

Ns∑
i=1

∥Υi∥2

=
1√
Nc

Ns∑
i=1

∥
iNo∑

n=(i−1)No+1

ȳ[n]W
(al+c)n2+(bk+d)n
K ∥2 .

(11)
Then f̃l and f̃k are estimated via the process in (9) and (10).

Fig. 2 shows the example process of the NC-DCFT method
when Ns = 10. From the method shown in (11) and Fig. 2, the
accuracy of the NC-DCFT method depends on the number of
symbols Ns, the length of samples No, and the initial point m1

in each symbol. These parameters correspond to the symbol
rate estimation, the sampling process, and the synchronisation
procedure.

IV. RANDOM SAMPLING AND SYNCHRONISATION ERRORS

Due to the nature of the NC-DCFT method, certain parame-
ters are unknown during the implementation. Thus, this section
proposes a RSP and discusses the presence of synchronisation
errors as the motivating scenario for this approach.
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Fig. 3. Example waveforms showing the effect of the random sampling
process and the impact of synchronisation errors.

A. Random Sampling Process (RSP)

In the NC-DCFT method, the number of samples No in
(11) is fixed for the ith symbol block, while the number of
samples ni in (8) can varying according to the implementation
of the NC-DFCT. The procedure to apply a fluctuating length
of samples ni in each NC-DCFT segment is the key concept
for the RSP. Fig. 3(a) shows the RSP with random sampling
termination points (RSTPs) mp and random block size np−1

for p− 1th block as black arrowed lines. The first sample of
input is the first RSTP as well as the start point in the RSP,
denoted as m1 = 1. The varying length of samples between
m1 and m2 is set as n1 and between m2 and m3 is expressed
as n2, then the RSTPs are correspondingly m2 = n1 + 1
and m3 = n2 + n1 + 1. In the following RSP, each RSTP
in the RSP is mp =

∑p−1
i=1 ni + 1 using the chosen values

ni. For the varying value of ni, the group R with the range
R ∈ Z ∩ [Rmin,Rmax] is introduced. In the RSP, ni is not
fixed but uniformly and randomly selected from the group R.
Based on (8), the final RSTP me are introduced as the symbol
transition from the (e−1)th symbol to adjacent symbols. The
random block size ne−1 is the number of input samples for
the eth symbol in the NC-DCFT method. The yellow lines
in Fig. 3(a) show examples of the RSTP values mp that form
the symbol blocks for the basic NC-DCFT process. Due to the
random value of ni, the number of RSTPs e of the RSTP me

is defined that me is no more than Nc while me+1 is greater
than Nc. As a result, the number of RSTPs e is not directly to
the number of symbols Ns. When applying the above process
to the NC-DCFT in (8), this paper defines the whole above
process as the random sampling NC-DCFT (RS-NC-DCFT).

B. Synchronisation Problem

In previous research, [9] shows the influence of synchro-
nisation error for the NC-DCFT method. With perfect syn-

TABLE I
KEY PARAMETER SETTINGS

Name and Notation Value or Definition
Default symbol rate Rs 50 k symbols per second

Default oversampling No 200 samples per symbol

Roll-off factor β for RRC filter 0.5

RRC Filter span Nr 6 symbols

Number of samples Nc 104

Time period T 10−3 s

Sample frequency fs 107 Hz

Number of Monte Carlo runs 104

Estimation range [fmin
l , fmax

l ] [109, 1010] Hz

Estimation range [fmin
k , fmax

k ] [0, 5× 105] Hz

Ground truth range gl for fl [109, 1010] Hz

Ground truth range gk for fk [0, 3× 105] Hz

Length of the NC-DCFT method K 256
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Fig. 4. Performance of the NC-DCFT method with different synchronisation
factors ϵp.

chronisation, the initial point of the input of x[n] or ȳ[n] is
m1 = 1 in Fig. 2. However, loss of synchronisation leads to a
mismatch and forces the initial point to change from 1 to ℓ1.

To describe the scale of the inaccurate synchronisation,
the synchronisation factor ϵp is introduced to calculate the
relationship of ℓ1 and No. For example, Fig. 2 shows the
ideal process of the synchronisation in the red dashed line
with ℓ1 = m1 = 1 and ϵp = 0% while Fig. 3(b) demonstrates
a worst-case synchronisation error with ℓ1 = m1 = No/2
and ϵp = 50%. The missed samples between the initial
waveform and ℓ1 are the offset with a synchronisation error as
illustrated in Fig. 3(b). Fig. 4 shows NMSE results for various
synchronisation factors ϵp. To evaluate the performance of
the NC-DCFT, this paper utlises the NMSE metric, which is
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defined as follows:

JNMSE =
ddT

ggT
, (12)

where the operation denoted by {·}T is the transpose, each
element of the vector d represents the difference between (f̃l−
gl) or (f̃k−gk) from each Monte Carlo simulation run, and the
elements in the vector g correspond to the ground truth values
of gl or gk. The ground truth vector gl for fl is calculated by
two steps. First, the value of α is randomly generated in the
interval of [0, 1], and each entry of gl as gi

gi = 10αi × 109 , i = 1, 2, . . . , 104. (13)

The ground truth vector gk for fk is randomly generated in
the interval of [0, 3 × 105]. Other parameter settings of the
simulations in this paper are shown in Table I.

Fig 4(a) shows when the synchronisation is perfect, namely
ϵp = 0%, and ϵp = 100% , the NMSE shows similar and best
performance. Furthermore, when ℓ1 = m1 = No/2, namely
ϵp = 50%, it performs worst for fl estimation. For ϵp in
the interval of [0%, 50%], the accuracy of the fl estimation
is decreasing but decreases symmetrically in the interval of
[50%, 100%]. This result is mainly caused by the composition
of samples in each block of samples. Samples belonging to
different symbols cancel each other out and deteriorate the
phase information for computing fl. Therefore, the NC-DCFT
method in the above condition loses coherent processing gain
and the recovery result is not as accurate as the ground
truth. With ϵp = 100%, all samples of the first symbols is
excluded and the similar performance with ϵp = 0% is shown.
Additionally, the ϵp = 50% case performs worst as each
data block contains equal number of samples in two different
symbols. Fig 4(b) shows the higher NMSE with a higher ϵp,
since inappropriate synchronisation loses initial information
of ȳ[n]. Thus, the actual starting synchronisation point ℓ1
experiences delay, which forces the value of fk to change,
thereby affecting the estimation accuracy.

V. SIMULATIONS AND DISCUSSION

This section compares the performance of the NC-DCFT
method and the proposed RS-NC-DCFT method in different
application settings. We consider scenarios with different
preset symbol rates and symbol synchronisation states. Key
parameter settings are shown in Table I and the performance
is evaluated based on the NMSE formula in (12).

A. Comparison of Preset Symbol Rate

Since the symbol rate Rs affects the number of symbols Ns

and the oversampling value No, both of them are significant
parameters in (11). Furthermore, the receiver may preset Rs

or Ns due to the prior knowledge and then process the
received waveform based on these preset values, therefore
this subsection discusses the impact of preset values of Rs

or Ns. Assuming the preset symbol rates Rs stored in S
are [10 k, 25 k, 40 k, 50 k, 100 k, 200 k] while the ground truth
symbol rate is 50 k in Table I. Correspondingly, the preset
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Fig. 5. NMSE results for fl via different preset symbol rates.

TABLE II
PARAMETERS SETTINGS FOR THE RS-NC-DCFT METHOD

Label R1 R2 R3 R4 R5

RS range [1, 200] [1, 400] [40, 100] [100, 300] [200, 400]

values of Ns deposited in Ss are [10, 25, 40, 50, 100, 200]
while No stored in So are [1000, 400, 250, 200, 100, 50].

The NMSE trends for both fl and fk is similar and therefore
Fig. 5 only presents the NMSE result of fl. In Fig. 5, the
ground truth performs best as expected. However, estimating
a higher symbol rate performs slightly worse but with similar
results at high SNRs while estimating a lower symbol rate
performs much more poorly. The performances in Fig. 5 can
be attributed to incorrect sets of Ns for use in (11). Since the
received signal is divided into Ns regions as part of the NC-
DCFT, an incorrect estimate of Ns yields blocks of data that do
not optimally capture a single symbol. When Ns is less than
the ground truth, a larger number of samples are calculated
for Υi in ith block. Such samples from different symbols
again cancel each other out and therefore deteriorate the NC-
DCFT performance. When Ns is larger than the ground truth,
the smaller number of samples are included for Υi and the
truncated length of samples shows poorer gain versus noise
performance, especially at high SNRs.

B. Performance of the RS-NC-DCFT method

This subsection compares the performance of the RS-NC-
DCFT method in Sec. IV-A and the NC-DCFT method where
the symbol rate is known or estimated by [11]. Five possible
settings of the RS-NC-DCFT method are shown in Table II
with their own labels R1-R5 in Fig. 6.

For each Monte Carlo run, the ground truth of the length
of No is fixed as 200. Fig. 6 only shows the NMSE result
of fl as the NMSE trends are similar for above methods for
both fl and fk. Fig. 6 shows the NMSE results of R1 and R3
are close to the ground truth while R2, R4, and R5 performs
worse. Since in the R group such as R1 and R3, the majority
of the samples in the each block come from one symbol with a
high probability and therefore the sample cancellation effect is
avoided. Thus, when Rmax is larger, the RS-NC-DCFT method
is unable to estimate fl and fk of the QPSK-LFM waveforms.
Furthermore, when Rmin is too small such as R1, the RS-NC-
DCFT method performs worse than with a medium choice
of Rmin such as R3. Therefore, the RS-NC-DCFT methods
works well with a specific and appropriate R range.
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Fig. 7. Performance of the NC-DCFT method via different methods with
ϵp = 50%.

Additionally, Fig. 6 shows the estimated method performs
well when SNR is above −5 dB. Furthermore, the RS-NC-
DCFT methods with R1 and R3 ranges outperform the esti-
mated method when the SNR is lower than −5 dB and shows
similar performance of the estimated method when the SNR
is above 5 dB. Therefore, Fig. 6 shows the RS-NC-DCFT
method with a specific R range is a viable scheme for the
implementation of the NC-DCFT. Fig. 5 shows us that the
estimated symbol rate is important for parameter estimation
with the NC-DCFT. Fig. 6 confirms that, by using the RS-NC-
DCFT, we can achieve a good level of performance without
knowing the symbol rate exactly.

C. Synchronisation Problem

For the synchronisation process illustrated by Fig. 3(b), this
subsection discusses the implementation of methods in Table II
with the worst synchronisation scenario ϵp = 50% shown in
Fig. 4(a). For the fl recovery results, Fig. 7(a) shows the NC-
DCFT method with the known symbol rate (labelled Ground)
performs poorly compared to Fig. 6. Furthermore, Fig. 7(a)
shows the performance of the RS-NC-DCFT methods is simi-
lar as shown in Fig. 6 and outperforms the performance of the
“Ground” approach. Therefore, the results show the RS-NC-
DCFT method is able to resist the influence of inappropriate

synchronisation. However, the fk recovery in Fig. 7(b) of all
methods performs poorly due to the loss of data samples,
which is similar to the effect shown in Fig. 4(b). Therefore, the
result shows the RS-NC-DCFT method with a specific R range
is an alternative implementation method to maintain good
NMSE performance when there are synchronisation errors.

VI. CONCLUSION

This paper discusses one application of the ISAC waveform
based on the data modulated LFM waveform. To estimate
waveform parameters, the RS-NC-DCFT method is proposed
and applied in a blind system with time synchronisation
errors. For the NC-DCFT method, when the symbol rate is
overestimated, the performance is found to approach that of
the ground truth case in the absence of timing errors.

Moreover, the RS-NC-DCFT method with a suitable symbol
rate range R performs well and shows the similar performance
to the ground truth case. Furthermore, in the presence of
time synchronisation errors, the RS-NC-DCFT method can
perform better than the NC-DCFT method using the correct
symbol rate. Scenarios with unknown symbol rates and syn-
chronisation errors are highly likely to occur in practice. In
general, the RS-NC-DCFT method proposed in this paper is a
robust choice for real-world scenarios when the symbol rate is
unknown and waveform synchronisation is subject to timing
errors.
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Abstract—The polynomial power method repeatedly multiplies
a polynomial vector by a para-Hermitian matrix containing
spectrally majorised eigenvalue to estimate the dominant eigen-
vector corresponding to the dominant eigenvalue. To limit the
order of the resulting vector, truncation is performed in each
iteration. This paper extends the polynomial power method from
para-Hermitian matrices to a general polynomial matrix for
determining its dominant left- and right-singular vectors and the
corresponding singular value. The proposed extension assumes
that the dominant singular is positive on the unit circle. The
resulting algorithm is compared with a state-of-the-art PSVD al-
gorithm and provides better accuracy with reduced computation
time and lower approximation orders for the decomposition.

I. INTRODUCTION

The algebra of polynomial matrices has proven to be
useful in solving a variety of problems related to broadband
sensor arrays, particularly through the application of two
main operations: the polynomial eigenvalue decomposition
(PEVD) [1–8] and the polynomial singular value decom-
position (PSVD) [9–11]. The PEVD is restricted to para-
Hermitian matrices only, where the matrix is equal to its
transpose-conjugate time-reversed version [12]. In contrast,
the PSVD can be applied to any polynomial matrix. Thus,
PSVD algorithms find applications in a variety of problems
such as MIMO design [13, 14], paraunitary filter design [7],
or beamforming [15].

Typically, the PSVD is calculated using two PEVDs [10]
or via a polynomial QR decomposition (PQRD) [9], both
of which are computationally expensive. However, a ded-
icated PSVD algorithm exists which is the generalization
of the second-order sequential best rotation (SBR2)[4], and
it exploits the Kogbetliantz transformation[16]. This method
iteratively transfers the energy onto the diagonal. While [16]
performs only an approximate diagonalization, its perfor-
mance is still better than that achieved via PEVD or PQRD
approaches. An SVD with analytic factors exists [17, 18],
such that there are unique singular values that are real on
the unit circle, and left- and right-singular vectors that share a
common ambiguity w.r.t. arbitrary allpass functions. The above
algorithm ignore this coupled ambiguity, and hence typically
yield complex-valued approximations of the singular values.

In order to overcome the deficiencies of the above PSVD
algorithms, in this document, we extend the polynomial power
method [19] from a para-Hermitian matrix to a general

Faizan Khattak is supported by the Commonwealth Scholarship Commis-
sion. This work was also supported in parts by the Engineering and Physical
Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the
MOD University Defence Research Collaboration in Signal Processing.

polynomial matrix for the computation of the dominant left-
and right-singular vector and the singular value. The poly-
nomial power method is an extension of the ordinary power
method [20] to para-Hermitian matrices where a polynomial
vector is repeatedly multiplied by a para-Hermitian matrix,
and the resulting vector converges to the dominant eigenvector
provided that the matrix is spectrally majorised. Similar to the
power method, the generalised polynomial power method can
be coupled with deflation in order to compute an entire PSVD.

II. POLYNOMIAL SINGULAR VALUE DECOMPOSITION

For an analytic, non-multiplexed polynomial matrix A(z) ∈
CM×N ,M ≥ N , the analytic SVD exists [18]

A(z) = U(z)Σ(z)V P(z) , (1)

such that Σ(z) = diag{σ1(z), . . . , σN (z)} ∈ CM×N con-
tains the analytic singular values and the matrices U(z) ∈
CM×M , V (z) ∈ CN×N are paraunitary i.e. U(z)UP(z) =
I,V (z)V P(z) = I, and contains the left- and right analytic
singular vectors, respectively. Note that the parahermitian
operation, {·}P, involves a Hermitian transposition and time
reversal of its arguments, such that e.g. UP(z) = (U(1/z∗)H.
Unlike singular values of constant matrices, which must be
real and positive semi-definite [20], the analytic singular values
evaluated on unit circle for z = ejΩ must be permitted to take
on negative values. This is similarly known for matrices that
depend analytically on a continuous, real parameter on some
interval [21, 22].

Generally, the analytic singular values of a matrix A(z)
may intersect. However, if A(z) is estimated from finite data
e.g. via system identification [23], it will have spectrally
majorised singular values

σi(e
jΩ) ≥ σi+1(e

jΩ) ∀ Ω, i = 1, . . . , (N − 1) (2)

with probability one [23]. We therefore assume the property
(2) to hold for the remainder of this paper.

III. POLYNOMIAL POWER METHOD FOR PARAHERMITIAN
MATRIX

The underlying idea is to extend the polynomial power
method, proposed in [19] for para-Hermitian matrices, to
general polynomial matrices for the extraction of the dominant
singular vectors and singular value. Thus this section provides
a brief summary of the polynomial power method. We denote
a para-Hermitian matrix by R(z), which must therefore must
satisfy RP(z) = R(z) [12].
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A. Overall Rationale

This method is an extension of the ordinary power itera-
tion [20] from Hermitian matrices to para-Hermitian matrices
where an arbitrary polynomial vector x(0)(z) is repeatedly
multiplied with a para-Hermitian matrix R(z) to obtain a
sequence of polynomial vectors. After k iterations, we have

x(k)(z) = R(z)x(k−1)(z) = Rk(z)x(0)(z) . (3)

In each iteration, x(k)(z) has to be normalized, such that
x
(k)
norm(z) satisfies x(k),P

norm(z)x
(k)
norm(z) = 1. This normalization

can be performed on the unit-circle, due to analyticity, with
ease. To limit the order growth of x(k)(z), truncation can be
applied. This can be achieved by either limiting the order to
the estimated support of the eigenvector obtained from [24] by
shifted-truncation [25], or removing any trailing coefficients
below a small threshold. The iterations are stopped once a
suitable defined difference between consecutive polynomial
vectors falls below some threshold. The overall analysis that
connects the polynomial power method with the ordinary
power method is given next.

B. Polynomial Power Method Analysis

The initial x(0)(z) can be represented as a linear combina-
tion of the eigenvectors of R(z)

x(0)(z) = Q(z)c(z)

= c1(z)q1(z) + · · ·+ cM (z)qM (z) , (4)

where qm(z), m = 1 . . . ,M , is the mth analytic eigenvector
of R(z) and c(z) = [c1(z), . . . , cM ]T ∈ CM is a vector of
analytic weighting factors. Due to analyticity, we can restrict
the analysis to the unit circle. Therefore, z can be substituted
with ejΩ to evaluate and iterate on the unit circle. Combining
(4) and (3) with the fact that R(z) has spectrally-majorised
eigenvalues due to being estimated from finite data, we have

x(k)(ejΩ) = λk
1(e

jΩ)

[
c1(e

jΩ)q1(e
jΩ)

+

M∑
m=2

cm(ejΩ)

(
λm(ejΩ)

λ1(ejΩ)

)k

qm(ejΩ)

]
. (5)

The summation term will converge towards zero for k →∞.
This permits us to re-write (5) as

x(k)(ejΩ) = lim
k→∞

λk
1(e

jΩ)c1(e
jΩ)q1(e

jΩ) . (6)

The term x(k)(ejΩ) in (6) is normalized in each iteration
such that it has unit norm on the unit circle. This normalisation
is carried out in the DFT domain. If c1(e

jΩ) possesses any
spectral nulls for some Ω, the resulting division by zero in the
normalisation process can be avoided by regularization [19].
For a sufficiently large k, the normalized vectors become

x(k)
norm(e

jΩ) = q̂1(z) = g1(e
jΩ)q1(e

jΩ) , (7)

where g1(e
jΩ) = c1(e

jΩ)/|c1(ejΩ)| is an allpass filter. This all-
pass filter generalises the phase ambiguity of the eigenvectors
of a standard matrix.

Algorithm 1: PPM Algorithm [19]
Input: R(z), ϵ, kmax

Output: q̂1(z), λ̂1(z)
x(0)(z) ∈ CM , k ← 0, γ =∞;
x̃(0)
norm(z)← normalise & order limit x(0)(z) ;

while γ > ϵ & k < kmax do
k ← k + 1;
x(k)(z)← R(z)x̃(k−1)

norm (z) ;
x
(k)
norm(z)← normalisation x(k)(z);

x̃(k)
norm(z)← order limitation of x(k)

norm(z);
update γ

end
q̂1(z) = x̃(k)

norm(z);
λ̂1(z) = x̃(k),P

norm(z)R(z)x̃(k)
norm(z);

The stopping criterion for the polynomial power method is
to measure the overall deviation

γ =
1

2π

∫ π

−π

|α(Ω)|2dΩ (8)

of the Hermitan angle α(Ω), defined as

α(Ω) = ∠{x(k)
norm(e

jΩ),x(k−1)
norm (ejΩ)} =

acos

(
|x(k),H

norm (ejΩ)x
(k−1)
norm (ejΩ)|

∥x(k)
norm(ejΩ)∥2 · ∥x(k−1)

norm (ejΩ)∥2

)
.

Once γ falls below a threshold ϵ, the process can be ter-
minated. The corresponding dominant eigenvalue can be ex-
tracted as

λ̂1(z) = x̃(k),P
norm(z)R(z)x̃(k)

norm(z) . (9)

This constitutes the polynomial version of the power method
for spectrally majorised matrices, with the overall procedure
summarised in Algorithm 1. For further details, please refer
to [19].

IV. ORDINARY GENERALISED POWER METHOD

We know that the conventional reduced SVD of A ∈
CM×N with M ≥ N , given as A = UΛVH with
U = [u1, . . . ,uN ] ∈ CM×N , Σ ∈ RN×N and V =
[v1, . . . ,vN ] ∈ CN×N , can be obtained through the ordinary
power method [20]. In order to determine the right-singular
vectors, the power method can be applied to AHA ∈ CN×N

as its eigenvectors are in fact the right-singular vectors of A.
After v̂i = ejϕvi, i = 1, . . . , N has been found, the singular
values and left-singular vectors can be obtained via

σi = ||Av̂i||2,⇒ ûi =
Avi

σi
= ejϕui, i = 1, . . . ,M , (10)

where ejϕ is an arbitrary phase shift. Note that the phase
ambiguity of the left- and right-singular vectors is coupled.

Alternatively, the left-singular vector can be determined by
applying the power method to AAH and then the singular
value can be computed later. Since left- and right-singular
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vetors are determined independently, their phase ambiguities
are no longer coupled. Hence, if û1 = ejαu1 and v̂1 = ejϕv1,
the resulting estimated singular value will be σ̂1 = ûH

i Av̂1 =
e−jασ1e

jϕ i.e. it will not in general be real-valued. However,
real-valuedness, and therefore phase coupling of the left- and
right-singular vectors, can be achieved buy adjusting the phase
of σ̂i. Such a procedure may not be possible in the case of
polynomial matrices as will become clear in the following
section.

This shows that the power iteration is not restricted to
Hermitian matrices, but can indeed be applied to any matrix.
This motivates us to combine the above concept with the
already established polynomial power iterationsw, however.
The aim is to drop the restrictition to para-Hermitian matrices,
such that the dominant singular vectors may be computed in
first instance, with the option of later performing a full SVD
of a polynomial matrix through deflation.

V. GENERALIZED POLYNOMIAL POWER METHOD

We now aim to extend the polynomial power method re-
viewed in Sec. III to generalise the SVD approach summarised
in Sec. IV to the case of a polynomial matrix A(z) : C →
CM×N .

A. Polynomial Iterations Analysis

For an initial x(0)(z) = V (z)c(z), the polynomial iteration
can be applied to a para-Hermitian matrix AP(z)A(z) where
after k iterations, with z substituted by ejΩ , we obtain

x(k)(ejΩ) = AH(ejΩ)A(ejΩ)x(k−1)(ejΩ)

=
N∑

n=1

vn(e
jΩ)σ2k

n (ejΩ)vH
m(ejΩ)V (ejΩ)c(ejΩ) ,

(11)

which can be re-written as

x(k)(ejΩ) = σ2k
1 (ejΩ)

[
c1(e

jΩ)v1(e
jΩ)

+

M∑
m=2

cm(ejΩ)

(
σm(ejΩ)

σ1(ejΩ)

)2k

vm(ejΩ)

]
. (12)

Since the singular values of A(z) are spectrally-majorised, so
are the eigenvalues of the para-Hermitian matrix AP(z)A(z)
i.e. σ2

n(e
jΩ) ≥ σ2

n+1(e
jΩ) n = 1, . . . , N − 1. Hence x(k)(ejΩ)

converges to a scaled version of v1(e
jΩ) for sufficiently large

k similar to (6). Similarly, after normalization, we have

x(k)
norm(e

jΩ) = v̂1(e
jΩ) = g1(e

jΩ)v1(e
jΩ) ∀ Ω , (13)

where g1(z) is an allpass filter. Similar to the power method for
para-Hermitian matrix, this generalised approach also includes
truncation and normalization in each iteration which can be
found in the original algorithm reported in [19]. Similarly,
the problem of singularities in c1(e

jΩ) can be handled either
through regularization a or modification to the initialization if
a spectral zero is encountered.

The estimation of the dominant singular value and the
corresponding left-singular vector is not straightforward and

needs careful consideration. Assuming, we follow the first
method described in Sec. IV in (10), which is to determine
the singular value and then the left-singular vector. For this
method, the frequency dependent version for extracting the
dominant singular value will be

σ̂m(ejΩ) = ||A(ejΩ)v̂m(ejΩ)||2, m = 1, . . . , N , (14)

which forces σm(ejΩ) to be positive ∀ Ω due to the norm
operator whereas the theory behind the analytic decomposition
existence shows that the singular value can be negative on
the unit-circle [21, 22]. Forcing the singular values to be
positive violates this condition, thus with this method, the
obtained decomposition might differ from the decomposition
given in [18]. Alternatively, if the matrix A(z) is known to
be positive semi-definite, the singular values are guaranteed
to be real and positive and so this method gives the correct
decomposition. Once the singular value is obtained with an
acceptable accuracy, which we discuss further below, via (14)
the dominant left-singular vector can be obtained as

û1(e
jΩ) = A(ejΩ)v̂1(e

jΩ)/σ̂1(e
jΩ) = g1(e

jΩ)u1(e
jΩ) .

(15)

The allpass factor g1(e
jΩ) is the same as that of the right-

singular vector, such that their ambiguities are coupled. This
coupling results in the singular value being real-valued on the
unit-circle. Both (14) and (15) can be implemented in DFT
domain. Adjusting the size of this DFT is discussed further
below.

The second method, described in Sec. IV, determines the
left-singular vector by applying the polynomial power method
to A(z)AP(z) and then computes the singular value as
σ̂1(z) = ûP

1(z)A(z)v̂1(z). This method does not impose
the condition of singular value being positive on the unit
circle, and so it can allow the analytic decomposition given in
(1) to be achievable for any A(z). However, to retain real-
valuedness for the singular values on the unit circle, the
left- and right-singular vector have to have a common allpass
factor. Thus if both the left- and right-singular vectors are
independently extracted by applying the polynomial power
method to AP(z)A(z) and A(z)AP(z), respectively, the all-
pass factor in û1(z) and v̂1(z) will, in general, not be be
coupled. Hence, the second method may not be desireable to
be used unless a common phase shift can be found. Another
reason for avoiding this method is invoking two polynomial
power methods is computationally more expensive compared
to the first approach.

To optimize the computational efficiency of the first method,
we estimate the right singular vector using the polynomial
power method in case of M ≥ N . For the case M ≤ N , all
of the above approaches can used instead to factorise AP(z).

B. Sufficient DFT Size

1) Dominant Singular Value: Once v1(z) is determined
with Algorithm 1, the singular value can be determined via
(14) in the DFT domain. To determine a sufficient DFT size,
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time-domain aliasing can be utilized [2]. Thus (14) can be
evaluated at increasing DFT sizes until

ξσ̂ =
∑
τ

|σ̂(K)
1 [τ ]− σ̂

(K/2)
1 [τ ]|2

|σ̂(K)
1 [τ ]|2

, (16)

where σ̂
(K)
1 [τ ] represents the time-domain equivalent of (14)

obtained with a K−point inverse DFT, until ξσ̂ falls below
a certain low threshold ε1. A small value of ξσ̂ indicates
that K/2 can be considered sufficient for approximate the
dominant singular. If v̂i(z) is extracted with satisfactory
accuracy, a DFT size of K = O{A(z)v̂i(z)} + 1 should
generally suffice, where O{·} measures the polynomial order
of its argument.

2) Left Singular Vector: Similarly, to determine a sufficient
DFT size for (15), time-domain aliasing may be captured via
the error w.r.t. normality in the time-domain as

ξu =
∑
τ

|ûH
1 [−τ ] ∗ û1[τ ]− δ[τ ]|22, τ ∈ Z . (17)

A similar criterion has been utilised for the DFT size in [3].
There, it is shown as a necessary criterion; while sufficiency
has not been proven, in practise is has generally been shown
to suffice in all simulations.

It follows that for a sufficient DFT size ξu will be small
since û1[τ ] should be normal. Thus (15) is implemented
at increasing DFT size until ξu falls below a some given
threshold εu.

VI. SIMULATIONS AND RESULTS

A. Numerical Example

To demonstrate the potential of the generalized polynomial
power method, we assume a simple case of A(z) where we
know the ground truth factorisation according to (1). For these
factors, Σ(z) ∈ C3×2 contains

σ1(z) =
1

2
z + 4 +

1

2
z−1, σ2(z) =

1

4
z + 1 +

1

4
z−1 , (18)

which are spectrally majorised. The left-singular vector are
constructed via elementary paraunitary operation given as [12]

U(z) =
2∏

i=1

{I− (1− z−1)eie
H
i )} , (19)

where ei=1,2 = [1, 1,∓1]T/
√
(3) ∈ C3 are unit-norm vectors.

The right-singular vectors in V (z) ∈ C2×2 of order 2 are
generated by the same approach with e1 = [1,−1]T/

√
2 and

e2 = [−1, 0]T. The polynomial matrix A(z) is then defined
as U(z)Σ(z)V P(z).

Algorithm 1 is executed with ϵ = 10−12, kmax =
103, R(z) = AP(z)A(z) and x(0)(z) = 1. The truncation
method employed is the order limitation [19] where the
order of x(k)(z) post-normalisation is limited to the estimated
support obtained from [24]. Algorithm 1 converges in 44
iterations resulting in ξv = 1.4 × 10−11. Once the left-
singular vector is esimated, the corresponding singular value
is estimated via (14). With K = 16, the time-domain aliasing

Fig. 1. Polynomial Power method based estimated dominant singular value
coefficients for the numerical example.

Fig. 2. GSBR2 based estimated dominant singular value coefficients for the
numerical example.

ξλ = 8× 10−28. The trailing coefficients of σ̂1[τ ] are truncated
on either side of τ = 0 via a threshold of 10−10. This results
in order of 6 whereas the ground-truth singular value has an
order of 2. The coefficients are illustrated in Fig. 1 where
the coefficients at τ = 0,±1 exactly match the ground-truth
coefficients in (18), whereas the coefficients at τ = ±2,±3 are
smaller than 10−5. The normalized squared difference between
the estimated and the ground-truth singular value, which can
be defined similar to (16) as

ξσ =
∑
τ

|σ1[τ ]− σ̂1[τ ]|2

|σ1[τ ]|2
, (20)

is 3.5× 10−12. The corresponding left-singular vector is then
obtained from (15) with a DFT of size K = 16. Thereafter, the
order is limited by a shifted-truncation to 3, which achieves
a metric of ξv = 9× 10−12.

The GSBR2 is executed with µPU = 10−5, ϵ = 10−5 and
µPH = 10−5 for 1000 iterations and results in ξv = 9.6×10−5,
ξu = 1.5×10−5 and ξλ = 2.7×10−2. The dominant singular
value estimated with GSBR2 has order 8 whose coefficients
are illustrated in Fig. 2. It is evident that the estimated singular
value is neither conjugate symmetric and nor the coefficients
match the ground truth coefficients except at τ = 0 where
σ̂[0] = 3.95 ≈ 4. This loss of conjugate symmetry may be the
cause of large value of ξλ.

B. Ensemble Test

In a more extensive test, we evaluate the proposed method
against the Kogbetliantz transformation-based method [11]
which we refer to as the generalised second order sequential
best rotation (GSBR2) algorithm via an ensemble consisting of
500 randomised instantiations of A(z) ∈ C3×2 such that each
instance has O{U(z)} = O{V (z)} = 10 and O{Σ(z)} =
20. All the instantiations have spectrally majorised singular
values.
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TABLE I
PERFORMANCE COMPARISON OF GSBR2 AND GPPM

Metrics GSBR2 GPPM
O{û1(z)} 966± 185 10
O{v̂1(z)} 422± 126 10
O{σ̂1(z)} 96± 38 57± 4
ξv (1.2± 0.8)× 10−3 (5.5± 4.5)× 10−5

ξu (1.6± 0.85)× 10−3 (5.5± 4.5)× 10−5

ξσ 0.09± 0.07 (1.5± 1.3)× 10−5

time(s) 0.67± 0.15 0.44± 0.19

For the proposed method, Algorithm 1 is simulated with
ϵ = 10−10, kmax = 103, R(z) = AP(z)A(z) and x(0)(z) =
1. The order of the product vector is limited to 10, with its or-
der estimated through the method in [24], followed by shifted-
truncation [19, 25]. The corresponding singular value and the
left-singular vector are extracted at K = 2⌈log2(O{A(z)û1(z)})⌉

where ⌈.⌉ denotes ceiling operation. The trailing coefficients
of the estimated left-singular are truncated below a threshold
of 10−10 while the right-singular vector is similarly order-
limited to its estimated support. GSBR2 is simulated with
µPU = 10−4, µPH = 2 × 10−10 employing the original
truncation method of SBR2/SMD [4, 5]. The algorithm is
allowed to perform a maximum of 200 iteration; however, the
execution is terminated if the off-diagonal terms fall below
10−6.

The ensemble average for all the metrics is shown in
Table I. It is evident that the proposed method provides a
more compact order approximation for both the left- and
right-singular vectors and the singular value compared to
the GSBR2. Moreover, the errormetrics ξu and ξv of the
proposed method’s extracted singular vectors reach orders
of magnitude below those obtained with GSBR2. Likewise,
the normalized squared difference between the estimated and
ground-truth singular value is orders of magnitude lower for
the polynomial method than GSBR2. The potential reason
for the large deviation of the GSBR2’s estimated singular
value is likely the imperfect conjugate symmetry due to the
uncoupled allpass ambiguity of the estimated left- and right-
singular vectors. Also, SBR2-type algorithms are known to
only achieves a relatively poor diagonalisation compared to
their DFT-domain counterparts in e.g. [2, 3].

VII. CONCLUSION

The polynomial power method, which was initially pro-
posed form para-Hermitian matrices, has been extended into
the generalized polynomial power method for computing the
dominant left- and right-singular vectors and their correspond-
ing singular value of a polynomial matrix. The proposed
extension provides better estimation of the singular vectors
with lower order approximation as compared to the only
direct PSVD algorithm based on the Kogbetliantz method. The
proposed method promises better results and can be further
utilized to compute the PSVD of a polynomial matrix through
the polynomial matrix deflation analogous to ordinary matrix
deflation.
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Abstract—We propose a method to jointly optimize placement
of a sonobuoy field and selection of appropriate active sonar
waveforms in a complex undersea environment, using deep rein-
forcement learning. To this end, we develop a custom simulation
environment and train an online algorithm that uses updated
information as sonobuoys are placed and sonar measurements
made. The approach may be termed multiple bistatic, though it
shares features with multistatic approaches. We develop bench-
marks using conventional fixed sonobuoy placement patterns
together with fixed composite sonar pulse trains and present
results that show our new approach can outperform the best
conventional combination of fixed placement pattern and pulse
train.

I. INTRODUCTION

The problems of optimizing sonobuoy placement patterns
and schedules [1], [2], [3], [4], and of optimizing waveform
selection and pulse train construction [5], [6], [7], [8], [9] for
sonar and radar, both have a long history in the literature. Our
new work suggests that there is a relationship between the
problems and that optimizing both sonobuoy placement and
waveform selection jointly can have performance benefits.

The sonobuoy placement problem in a complex environment
was examined in [10], [11], using a two-stage process, com-
bining an evolutionary algorithm with tabular reinforcement
learning. We now address the more complex problem in which
an optimal combination of sonobuoy placement schedule and
waveform sequence is sought online using updated information
throughout a mission. To achieve this, we use deep rein-
forcement learning (DRL) [12] to track an uncooperative and
stealthy target in a simulation of complex and noisy underwa-
ter environment. The environment is defined and parametrized
in such a way that tracking is difficult, and there are several
stochastic elements, adding to the difficulty in learning optimal
actions.

The rest of this paper is organized as follows. In Section
II we describe the scenario and the modelling used to con-
struct the simulations and the custom environment we have
developed to simulate the problem. In Section III we describe
simulations performed with fixed sonobuoy placement patterns
and sonar pulse trains, to investigate the joint effects of varying
these. In Section IV, we describe our custom environment and
the DRL algorithm, and present initial results.

II. SCENARIO AND MODELLING

Consider a scenario in which we wish to localize a single
underwater target of interest (TOI), given a fixed tolerance

Figure 1: An example of randomly generated ground truths (in black)
and predicted track (in blue). The positions of 14 sonobuoys in a
staggered lattice pattern of 5 columns are each marked with an x.
The base and sonar transmitter are located at (0,0). The placing agent
uses a predetermined striping flight plan, starting from the nearest
column to the base; the numbering indicates the order in which the
sonobuoys are placed. The predicted track may be more or less noisy
depending on the combination of ground truth, noise/clutter map,
sonobuoy pattern and pulse train.

for uncertainty around the target position. At the outset, we
know that the TOI is present within a defined rectangular area
of interest (AOI), the nearest edge of which is a significant
distance from a static base of operations which is located at
the origin in our coordinate system. This base is the starting
location of a sensor placing agent (such as a helicopter or
UAV), and active sonar pulses are transmitted from the base.
We assume that the TOI travels at a constant shallow depth.

During a mission, the agent moves to place the sonobuoys
in selected locations. The agent has a limited payload of
sonobuoys which it can place anywhere within the AOI,
subject to completing placement and returning to base within
a given maximum mission time. Depending on the schedule
chosen, the agent may not be able to place its entire payload
of sonobuoys. Rather than a full flight schedule being fixed
in advance, as considered in [10], [11], updated information
is used after placement of each sensor to decide on the next
placement location.

Once the first sensor is placed, at fixed intervals a single
high-powered transmitter located at the static base can send out
either a continuous wave (CW) waveform or a linear frequency
modulated (LFM) active sonar waveform. At time t each of
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the Nt sonobuoys already placed provides information in the
form of a state vector:

zi,t = [θi,t, ri.t, ˙ri,t]
T , i = 1 . . . Nt, t = 1 . . . Tmax,

the elements of which represent bearing, range and range-rate,
respectively. LFM pulses provide superior range performance
but inferior range-rate performance compared to CW pulses
[13], [14], [15]. The use of a composite pulse train allows the
sensors to optimise the information extracted from the TOI.

For the examples shown in this paper, the chosen mission
goal is to maximize the amount of time during which position
estimates (x̂1,t, x̂2,t) have errors below a certain threshold value
η, expressed in metres. The true constrained optimization
problem can be stated as:

Maximize
T∑
t=1

1

(√
(x1,t − x̂1,t)2 + (x2,t − x̂2,t)2 ≤ η

)
, (1)

s.t.

Nt 5 Nmax, (2)
T 5tmax,

where Nmax is the maximum payload of the placing agent and
T and tmax are the actual time that passes during the mission
and the maximum time for the mission, respectively, and 1 (x)

is the indicator function, which returns 1 if errors are below
the threshold and 0 otherwise. Hence the goal is to maximize
the number of time periods in which the error comes within
the threshold tolerance. The mission will terminate early if
the target leaves the AOI before the maximum time, and the
total number of sensors placed may not reach the maximum
payload if the total travel time does not allow placement of
all the sonobuoys. Total travel time includes the time spent
travelling to and from the base, the time travelling between
placement locations, and the time spent at each location during
the placement process. However, since we only have access to
(x̂1,t, x̂2,t) but not to ground truth, we cannot address Equation
1 directly during training of the algorithm, and so later we
will substitute a measure of uncertainty over the measurements
into the optimization problem as a proxy for the true objective
during training of the algorithm. Equation 1 will still be used
in validation, however.

In our initial modelling, N passive receivers, such as DIFAR
sonobuoys [16], have been placed in a predetermined grid pat-
tern of N sensors, optimized for equal coverage for the entire
AOI. The approach may be termed multiple bistatic, though it
shares features with multistatic approaches. The sonobuoys are
assumed to be equipped with GPS or other geolocation system
of similar accuracy, and to have an operational life limited
only by a scuttling time that exceeds the maximum mission
time [17]. The transmitter has a choice at each timestep t to
transmit one of two waveforms, LFM or CW, and the receivers
each report measurements in the form of estimated speed,
bearing and distance of the target, together with measures of
uncertainty. We assume that with high-powered active sonar,
probability of detection approaches 1.

Within the simulations, we use an unscented Kalman filter
[18] (UKF)-based tracker for sensor fusion and localization.
Ground truth is generated using a 2D linear Gaussian constant
velocity model. Initial position, course and speed are also
random, with the target initially placed within a large central
area inside the AOI. The measurement state space is calculated
using the bistatic Doppler shift equation in [19], calculated for
each sonobuoy as follows:

zi,t =
atan2 (x1,t, x2.t)

1
C
·
(√

x21,t + x22,t +
√

(x1,t − pi,1)2 + (x2,t − pi,2)2
)

−λ
2
·
√
(x1,t−pi,1)

2
+(x2,t−pi,2)

2·
√
( ˙x1,t)

2
+( ˙x2,t)

2√
x21,t+x

2
2,t

 , (3)

where atan2 is the standard 2-input arctangent function,
pi,t, i = 1 . . . Nt is the position vector of the ith placed
sonobuoy, λ is the wavelength of the carrier signal and C

is a constant representing the local speed of sound in water.
As in [10], [11], a random, spatially-varying environment
noise/clutter map is generated using D bivariate Gaussians
with random means and covariance matrices. This map is
used to calculate line integrals along the paths taken by
the sonar pulses, but in this scenario these are used to add
noise to the measurements used by the filter, as well as
acting as a proxy for transmission loss. The measurement
covariance parameters reflect the superiority of CW over LFM
for Doppler resolution and superiority of LFM over CW for
range resolution. The tracker then produces a state space
estimate x̂t =

[
x̂1,t, ̂̇x1,t, x̂2,t, ̂̇x2,t

]
for the target after updating

with all available measurements from the sensors that have
been placed.

Several simplifying assumptions have been used in the
modelling and simulation, in particular the following:

• Sonobuoys are identical, do not drift, do not fail, and their
position is known with certainty;

• There is a single TOI which is always detected by all
sonobuoys, albeit with possibly very high uncertainty,
with no false alarms or sensor failure.

Note that even with these simplifications, sensors that are a
long distance away from the target will supply little useful
information.

III. INITIAL SIMULATIONS

To investigate behaviour with traditional approaches to
sonobuoy placement and waveform selection and establish
benchmarks for performance, we first considered a scenario
where an agent (such as a helicopter) requires a fixed flight
plan in advance and places sonobuoys in a fixed, staggered
lattice pattern; see Figure 1. The nearest edge of the AOI
is placed 10km away from the base at the origin where
the placing agent is initially located. The transmitter at the
base uses a repeating pulse train which is a predetermined
sequence of CW and LFM pulses; for example, the pulse
train pt = [CW,LFM,LFM,CW,LFM,LFM ] has length 6 and
mean µpt = 0.66, calculated using a value of 1 for each LFM
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Figure 2: Heat map of aggregated mean time-on-track across 544,500
combinations of fixed sonobuoy placement patterns and composite
sonar pulse trains. The colour represents the mean time-on-track
percentage, that is, the percentage of time steps for which the
localization error is below the required threshold. This generally
increases with the number of sonobuoys, but whilst pulse trains with
a higher proportion of LFM do better for patterns with larger numbers
of sonobuoys, pulse trains with a lower proportion of LFM do better
for patterns with larger numbers of sonobuoys.

pulse and 0 for each CW pulse, so that µpt represents the
proportion of LFM pulses within the pulse train. Sonobuoy
placement patterns based on staggered lattices were generated
for numbers of sonobuoys in the range N = 8 . . . 20. We use a
fixed set of GT = 30 randomly generated ground truth paths,
which start at a central point with initial values within the
state vector xt drawn from a Gaussian distribution but subject
to several random changes during the course of the mission.
We also generated a fixed set of NC = 30 random generic
noise/clutter maps. We then ran all possible combinations of
ground truth path, noise/clutter map, pulse train, and sonobuoy
lattice placement pattern.

If the number of pulses in the repeating pattern is k =

2, 3, . . . ,K, then in general there are
(
K3 + 3 ·K2 + 2 ·K − 6

)
/6

combinations of two waveforms to consider; we used K = 6,
so that there were 55 combinations in total. We considered
a single lattice configuration for each non-prime number
∈ 2, . . . , 20; we omit prime numbers to ensure all columns of the
lattice have the same number of sensors. If Ns represents the
number of sonobuoy patterns, then the total number of unique
scenarios is GT · NC · Ns ·

(
K3 + 3 ·K2 + 2 ·K − 6

)
/6, so we

conducted 544,500 experiments in total. We then calculated
time-on-track, that is, the amount of time the tracker error
is less than η = 200m, for each scenario, using Equation 1.
Figures 2 and 3 show heat maps of mean scores and score
variance respectively, aggregated with respect to the ratio of
LFM within the pulse train and the number of sonobuoys in
the placed pattern.

One conclusion from the simulation results is that fixed

Figure 3: Heat map of aggregated time-on-track standard deviations
across all simulations. The standard deviation of time-on-track is
higher for LFM proportions above 0.5, but with respect to the number
of sensors, shows high correlation with the means shown in Figure
2, suggesting a trade-off between mean and variance.

patterns with higher numbers of placed sensors are not always
superior to ones with lower N . Although patterns with higher
N will give more information once placed, patterns with
smaller N are deployed faster over the whole AOI, potentially
giving more information to the tracker sooner, depending on
the initial location of the target and its subsequent movements.
The results also suggest a link between waveform selection
and sonobuoy placement pattern, in particular that different
patterns benefit from different proportions of LFM and CW
pulses.

IV. EXPERIMENTS WITH DEEP REINFORCEMENT
LEARNING

To facilitate experiments using DRL, we refactored our
simulation software as a custom simulation environment using
the OpenAI Gym [20] paradigm. In designing such an environ-
ment, the choice of observation space and action space is key.
In many standard test environments, such as Atari games, the
observation space is a preprocessed version of what is seen on
screen when the game is rendered, but we chose to construct
the observation space directly from available information, so
that it consists of the following:

• x-position of each sensor (size:N)
• y-position of each sensor (size:N)
• bearing prediction from each sensor (size:N)
• range from each sensor (size:N)
• range-rate from each sensor (size:N)
• predicted state vector for the target from the tracker

(size:4)
• position covariance from the tracker (size:4)
• prediction variance from the tracker (size:2)
• steps remaining to time limit (size:1)
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The total size of the observation space is 5 ·N +11. The inputs
are largely self-explanatory; the final input is necessary be-
cause episode lengths are variable, as an episode will terminate
before the time limit if the target leaves the AOI before this
time, and the algorithm needs some concept of steps remaining
to time limit in order to learn to adjust observed episode
rewards [21]. The information from sensors starts as all zeros
before any sonobuoys are placed and readings are added only
after each sonobuoy is placed. The algorithm has access only
to the resultant noisy and uncertain measurements from the
sensors.

For the purpose of deciding sonobuoy placement locations,
the environment is discretized into a grid determined by the
dimensions of the AOI and a scaling factor. We used a
20km×10km rectangle and a 200m scale, meaning there are
initially 5,000 locations available for sensor placement, and
6.89×1040 possible placement patterns of up to 14 sonobuoys.
A Gaussian error is added to the actual placement location
when the sensor is placed. The nearest edge of the AOI is
placed 10km away from the base, as in Section III.

The total action space consists of these locations plus two
waveform selection choices and a choice of no action. To
reduce this very large action space, and to deal with the fact
that the sonobuoy placement actions and waveform selection
actions have different timescales, we employ action masking
[22], [23], meaning that only actions which can be taken
at a given step are available to the algorithm at that step.
At the first step, the algorithm selects the first sonobuoy
placement location, and subsequently only the ‘no action’
option is available until that first sensor is placed. Thereafter at
steps immediately after a sensor is placed, all locations other
than ones at which sensors are already placed are available
to schedule sensor placement until all sensors are placed or
the episode ends; at all other steps, the action space reduces
to a binary decision between transmitting one of the two
waveforms (CW or LFM). The choice of placement locations
is also constrained by the requirement that the placing agent
be able to return to base from the next placement location
before the maximum time for the episode is reached.

For training we used the Proximal Policy Optimization
(PPO) [24] algorithm, which makes use of clipping of the
value function to avoid large updates and balance exploitation
and exploration. Policy gradient methods [25] compute an
estimator of the policy gradient and pass this to a stochastic
gradient descent algorithm; we used the Adam optimizer
[26] for this. PPO is easier to implement than many other
DRL algorithms because it requires only first-order gradients,
employs multiple workers and does not require a replay
buffer. We trained the algorithm with an initial payload of
14 sonobuoys. A new ground truth and noise/clutter map was
randomly generated for each episode. We cannot use time-on-
track for the reward function in training, as this requires access
to ground truth, so as a proxy at each timestep the reward is
set at 1 if the norm of the prediction covariance matrix from
the tracker is below a given threshold, and zero otherwise.

For validation, we randomly generated a new set of 100

Figure 4: Mean % time-on-track for the model at different local-
ization error thresholds. Time-on-track is calculated using different
values up for the threshold value η averaged over 100 different
environments. The best DRL model outperforms the best baseline
at all error thresholds.

environments, each again with a unique ground truth path and
noise/clutter map; ran each of the checkpoint models using
each of these environments; and recorded time-on-track as per
the methodology in Section III. We compared results to the
baseline combination from Section III that showed best results,
namely a fixed pattern of 14 sonobuoys combined with a fixed
repeating pulse train pt = [LFM,LFM,CW,LFM,LFM,CW ].

We found that the DRL model trained for 8 million
steps performed best, and outperformed the baseline at all
thresholds; see Figure 4. Training improves performance up
to this checkpoint, but out-of-sample performance deteriorates
thereafter, as further training leads to overfitting [27].

V. DISCUSSION AND FUTURE WORK

We have shown that jointly optimizing sonobuoy placement
patterns and composite sonar pulse trains based on updated
information from sensors can improve localization perform-
ance in a complex and noisy environment where tracking is
difficult. Results from simulations with fixed sonobuoy pat-
terns and composite sonar pulse trains show different patterns
benefit from different proportions of LFM and CW pulses,
and that patterns with higher numbers of sensors are not
always superior, because of the increased deployment time.
Preliminary results for the DRL algorithm running with our
custom simulation environment show promising improvements
in performance compared to the untrained model.

In future work we will look to improve the performance
of the algorithm further by investigating alternatives to PPO,
increasing training time and changing the configuration of the
observation space. We also envisage adding further elements
that increase the realism of the problem. This may include:
modelling initial sensor payload as a random variable; other
stochastic elements such as imprecise placement and drift of
sonobuoys; accounting for the attitude of the target to the
sensors; sensor variability or failure; and multiple targets and
false alarms.
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Abstract—The scattering of electromagnetic signals from wind
turbines is a potential cause of clutter especially for passive
radars which may use for example commercial Digital Video
Broadcasting – Terrestrial (DVB-T) or frequency modulation
(FM) broadcasting transmissions as transmitters of opportunity.
These transmitters typically have a nearly constant gain in
azimuth and thus they will illuminate the wind turbines at all
times if they are visible to the transmitter mast. Understanding
the wind turbine clutter is a first step in mitigating its negative
effects. A previously published analytic line scatterer model for
wind turbines is developed further in this work. Elevation angles
are taken into account and thus the transmitter, wind turbine
and receiver locations are no longer limited to the plane of same
height. Furthermore, the amplitude of the scattered signal in
the line scatterer model is investigated in detail and compared to
radar cross-section (RCS) simulations from a 3D model of a wind
turbine rotor. Based on this comparison, frequency dependent
models for the amplitude are developed. The model development
shows that wind turbine RCS can be highly dependent on
frequency and view angle, but simplified models can also give
quite good predictions. One possible application of the model
is demonstrated by simulating a passive radar signal processing
scenario where the effect of the blade flashes can be seen in the
cross-ambiguity function (CAF) computation.

Index Terms—Electromagnetic scattering, Wind energy, Wind
turbine, Bistatic radar, Passive radar, RCS simulation

I. INTRODUCTION

Modern wind turbines are seen as large reflective objects by
radars and sources of both stationary and doppler shifted clut-
ter. For this reason, considerable amount of both simulations
and experimental research work has been done to both under-
stand and mitigate the problem during the past decade. The
accelerating shift towards greener energy production means
that the number and size of wind turbines will continue to
increase in the future.

Wind turbine scattering has been modeled using for example
a finite number of point scatterers placed at regular intervals
on the blades’ locations [1]. This kind of modeling is typical
for studying various Doppler modulation effects caused by for
example the target’s vibration or rotation and they are referred
to as micro-Doppler effects [2]. An analytic formula for the
scattered response of wind turbine blades was developed in [3]
by integrating point scatterers along the length of the blades.
It was assumed in [3] that the transmitter, wind turbine, and
receiver are all located at the same height. There was also no
mention about scaling the amplitude of the scattered signal
based on RCS simulations or measurements. This model is

further developed in this study by including the elevation
angles into the formula and developing a model for scaling
the scattering amplitudes realistically. We also note that a
similar model was developed earlier in [4] by considering the
far-field electromagnetic field of infinitesimal dipoles placed
along the blade and integrating along the length of the blades
for the complete field. The simulation results were carried out
using numerical integration, so no closed form formula was
presented. In [5], the micro-Doppler modeling was combined
with simple multipath considerations as possible sources of
more irregular scattering returns from wind turbines.

Spectrograms calculated from radar returns of wind turbines
have been reported in multiple papers during the previous
decades. Several measured time series of wind turbine clutter
in the S- and X-band are documented in [6]. Measurements of
wind park clutter recorded by a passive radar is documented in
[7]. Also the RCS of a scaled down laboratory model is studied
in [8] and compared to simulations and measurements.

Some interesting methods for removing wind turbine clut-
ter as post processing from weather radar CAFs have been
presented for example in [9] and [10]. In [9], sparse signal
processing is used by assuming that the weather data have a
groups sparse property and the wind turbine data have a sparse
time derivative. In [10], the CAFs are analysed as images via
the Radon transform and the vertical bands are mainly caused
by the wind turbines. These can be removed in the Radon
domain by filtering the low angle data. It should be noted that
although these post processing methods may remove the blade
flashes, they will not remove the base noise level caused by
the blade flashes in the CAF computation. This phenomena of
larger target echo sidelobes masking the detection of smaller
ones across all ranges and velocities is described in [11, Ch.
5.1]. The sidelobes of wind turbine flashes may cause such
masking of targets especially if a passive radar is placed so
close to the wind turbine that it is in its line of sight.

Typically in passive radar processing one needs to digi-
tally remove at least the zero-frequency components before
the computation of the CAF. This removes the multipath
interferences from stationary objects. But wind turbine clutter
can be present at quite large Doppler frequencies, and to
remove it, would mean extending the filtering to certain range-
Doppler areas away from the zero-frequency line. Adaptive
digital clutter removal algorithms are discussed for example
in [12] and especially for Orthogonal Frequency Division
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Multiplexing (OFDM) modulation signals in [13], [14].
The strong radar returns from wind turbines are not always

an undesired effect, as there has also been research aimed
at utilizing dedicated radar mesurements of wind turbine
scattering for online monitoring of wind turbine operation and
their structural health [15], [16]. In [15], it was demonstrated
that from scattered signal returns from DVB-T signals it was
possible to extract the structural resonance frequency of the
the tower and the blade rotation frequency and its multiples.
In [16], it was shown that C- and K-band measurements can
reveal the shape (straight or curved) of the turbine blades from
the calculated spectrograms of signal returns.

The above examples highlight the needs for improved
models for the scattering of electromagnetic signals from wind
turbines and that these models have potentially multiple use
cases. The structure of the rest of this paper is as follows.
In Section II, the analytical equation for the line scatterer
model is developed further based on [3] by adding elevation
angles into the model. In Section III, the amplitude in the
line scatterer equation is discussed in detail and a frequency-
dependent model is developed for it based on numerical RCS
simulations of a wind turbine. In Section IV, examples of the
model applied to simulating realistic passive coherent location
(PCL) radar CAF calculations are shown and in Section V
conclusions from these modeling improvements are drawn.

II. LINE SCATTERER MODEL

The model is based on [3]. Since we generalize it to
include all possible elevation angles, it is necessary to formally
develop the equation. The scattered signal from a single point
scatterer at distance RT from a transmitter (Tx) and RR from
a receiver (Rx) is

sScatterer(t, r) = A · ej(2πf0t−ckτ+Φ0), (1)

where τ = (RT + RR)/c is path delay, c is the speed of
light, A is amplitude, f0 is sampling frequency, k = 2π

λ is
wavenumber, λ is wave length and Φ0 is a constant phase. The
origin for spherical coordinates is located at the rotor center
and a single scatterer’s location r is thus (r, φS,ΘS). The
rotational angular frequency ω of the wind turbine changes
the inclination of the scatterer φS as a function of time
φS = ωt measured from the z-axis in the clockwise direction.
This differs from the elevation angles φT and φR, which
are measured from the xy-plane and limited to [−π/2, π/2].
Locations of the transmitter and receiver are rT = (rT, φT,ΘT)
and rR = (rR, φR,ΘR). The geometry is demonstrated for
the scatterer and transmitter in Fig. 1 and a corresponding
geometry is valid for the receiver as well in the bistatic
scenario. We need the azimuth angle differences between the
level of the rotor hub and the transmitter and receiver

θ{R,T} = ΘS −Θ{R,T}, (2)

We make the same simplification as was done in [3], namely,
we observe that the length of the blades L is insignificant
compared to RT or RR, but we extend this observation to the

Fig. 1. Coordinate system (left) for a single point scatterer at a distance r
from the rotor hub and RT from the transmitter and a view of a vertical plane
(right) from it to illustrate the approximate distance changes. The horizontal
line in the latter is a when the horizontal change r sinφS cos θT cosφT is
considered and b when the vertical change r cosφS sinφT is considered. The
vector r is first projected into a or b and then into rT or perpendicular to it.
An equivalent geometry will also apply for the point scatterer and the receiver,
but the corresponding distances are not shown here for clarity. The left-hand
panel is inspired by Fig. 1 in [3] with updated notation and coordinates.

z-direction as well. We thus observe the change in distance
in horizontal and vertical directions separately for given el-
evations of the transmitter and receiver. This observation is
demonstrated in Fig. 1 and the equations for the distances are

RT = ‖r− rT‖ ≈ rT− r sinφS cos θT cosφT− r cosφS sinφT,
(3)

RR = ‖r−rR‖ ≈ rR− r sinφS cos θR cosφR− r cosφS sinφR.
(4)

At this point we note that this approximation gives the exact
distance difference when the blade is pointing directly in the
direction of Tx/Rx or away from it and θR = θT = 0. In
the first situation φT = φR = π/2 − φS and thus sin(φT) =
sin(π/2−φS) = cos(φS) and the same holds for cosines. This
means that

‖r− rT‖ ≈ rT − r sin2 φS − r cos2 φS = rT − r. (5)

When the blade is pointing in the opposite direction, the result
would likewise be the exact rT + r. In the earlier model of
[3], this exact distance would only occur when the blade is
parallel to zero elevation. Combining the two approximations
(3) and (4) to (1) gives

sScatterer(t, r) =

A · exp
(
j
[
2πf0t+ kr sin(ωt)

(
cos θR cosφR + cos θT cosφT

)
+ kr cos(ωt)

(
sinφR + sinφT

)
− k(rR + rT) + Φ0

])
. (6)

Now Φ1 = −k(rR + rT) + Φ0 and then we integrate over the
length of the blade

sBlade(t) =

∫ L

0

sScatterer(t, r)dr =A· ej(2πf0t+Φ1)

·

[(
e
jkL

(
sin(ωt)

(
cosθRcosφR+cosθTcosφT

)
+cos(ωt)

(
sinφR+sinφT

))
− 1

)

/

(
jk
(

sin(ωt)
(
cos θR cosφR+cos θT cosφT

)
+cos(ωt)

(
sinφR+sinφT

)))]
. (7)
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Fig. 2. A 3D model adapted from [17] and used for RCS simulations and
studying the maximum, mean and median values of blade flashes. The blade
lengths were scaled to 85 m.

By observing the limit lima→0
1
jab (e

jabL − 1) = L, we see
that the result inside the brackets is L when the denominator
is zero. The final result is a sum of N equally spaced blades

sRotor(t) = A · ej(2πf0t+Φ1)

·
N∑
n=1

[(
exp

(
jkL

(
sin(ωt+

2πn

N
)
(
cos θR cosφR+cos θT cosφT

)
+ cos(ωt+

2πn

N
)
(
sinφR + sinφT

)))
− 1

)

/

(
jk
(

sin(ωt+
2πn

N
)
(
cos θR cosφR+cos θT cosφT

)
+cos(ωt+

2πn

N
)
(
sinφR+sinφT

)))]
, (8)

where N = 3 for typical wind turbines.
The spectrum of the signal is a box function. Increasing the

rotor frequency flattens the spectrum, i.e., makes it lower in
amplitudes and wider in frequencies.

We can also note some special values of the model. Inserting
φT = 0 and φR = 0 removes all the terms related to elevations
and returns the simpler model where everything is located on
the same plane. With φT = ±π/2 and φR = ±π/2, the Tx
and Rx are located directly above or below the wind turbine
on the same vertical line and all the terms related to azimuth
angles disappear.

III. AMPLITUDE OF THE LINE SCATTERER

The amplitude A describes the amplitude of the scattered
signal per length of the blade. Because the maximum absolute
value inside the brackets in (7) can be L, the maximum
absolute value of (7) is AL. The RCS of a blade is proportional
to the square of (7) and its maximum is thus (AL)2. From
these considerations we also see that A is unitless. For realistic
simulations, we need a good way to estimate A, since the
mathematics of the model developed so far do not give any
clues to its desired behavior. To this end, we performed RCS
simulations for a 3D model of a wind turbine shown in Fig.
2 using a method described in [18]. The simulations were

Fig. 3. Mean and median (left) and maximum (right) values of the scattered
amplitude for a 85 m long blade over monostatic azimuth view angles
0◦, 10◦, . . . , 60◦ and zero elevation and best fits of the function bf1/2 and
df1/2 (left) or gf + uf2 (right) to those values.

performed with the assumption that the blades are perfectly
conducting. Of course, this is not completely true, since
the blades are constructed from composite materials, which
typically contain a lot of fiberglass, for example. Simulations
between fiberglass and perfectly conducting blades were com-
pared in [19] and it was found that the differences in absolute
RCS values were negligible.

The estimated RCS values from our simulations showed,
that the mean and median values of blade flash maximum
amplitudes across a range of different azimuth view angles and
zero elevation increased roughly as a square root of frequency.
These mean and median values and their square root fits are
shown in Fig. 3. R2 value for the mean value fit is 0.991 and
for the median values it is 0.925. The maximum values of
the same range of view angles on the other hand increased
almost linearly for most of the frequency interval and this is
also shown in Fig. 3. R2 for the fit of the maximum values
of the form cf +df2 is 0.999 and adjusted R2 is 0.998. Since
the actual shape of the blade is mostly like a cone plus a flat
section, it is not a surprise that the RCS depends on frequency
and view angle. The maximum values were all attained from
a single view angle (50◦) when the flat part of the blade was
roughly parallel to the transmitted and received beam during
the top flash. Note that the goal was to find simple analytical
formulas which fit the data well and hopefully correspond to
some known RCS formulas of some simple shapes. For this
reason, we required that the fits must converge to 0 at 0 MHz.
We draw two conclusions from these observations.

1) The mean or median behavior of the RCS over different
view angles can be approximated with a cylinder model.

2) The maximum possible RCS occur at very specific view
angles but can be huge. These can be approximated with
a flat plate model at least up to 1 GHz.

We also note that increasing main flashes with frequency can
also be seen in the simulations in [19], even though it was not
the main focus in that study and most figures also contain the
effect of the tower. For passive radar applications the tower is
not such a big consern, because its effect is removed in the
typical signal processing when the zero-Doppler is filtered.

Fig. 3 tells us that the mean and median monostatic RCS
values of the blade flashes increase roughly linearly with
frequency. A suitable simple model for this frequency de-
pendency is thus a cylinder, for which the physical optics
monostatic RCS approximation when viewed head on from
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Fig. 4. Scattered RCS time series at the frequencies 100 MHz (top row) and
600 MHz (bottom row) for a wind turbine with 85 m long blades of monostatic
view angles 0◦, 50◦ and 60◦ calculated using the RCS simulation results (left
column) and the line scatterer model (right column).

the broadside [20, Ch. 5.3] is

RCScylinder =
πDL2

λ
=
πDL2f

c
, (9)

and then the amplitude per length of blade is

Acylinder =
RCS1/2

cylinder

L
=

(
πD

λ

)1/2

=

(
πDf

c

)1/2

. (10)

Using the fitted curve value b = 0.018442 s1/2m from Fig.
3, we can solve what is the width of the modelled cylinder
which causes the mean RCS behavior when the blade length
is L = 85 m

D =
(0.018442 s1/2m/85 m)2 · 299792458 m/s

π
= 4.492 m,

(11)
and using the fitted value of d = 0.012267 s1/2m from Fig.
3, the median behavior is achieved by a cylinder of width
D = 1.988 m.

The physical optics monostatic RCS approximation of a flat
plate of length L and width W when viewed head on [20, Ch.
5.3] is

RCSplate =
4πW 2L2

λ2
=

4πW 2L2f2

c2
, (12)

and the amplitude per length of blade would be

Aplate =
RCS1/2

plate

L
=

2π1/2W

λ
=

2π1/2Wf

c
. (13)

Using the fitted curve value g for the linear part of the
maximum value fit from Fig. 3, the width of the modelled plate
causing the maximum RCS behavior when the blade length is
L = 85 m

W =
(3.7469 · 10−6 sm/85 m) · 299792458 m/s

2π1/2
= 3.728 m.

(14)
These are all reasonable widths compared to the blade

length of 85 m. The maximum width of the blades in the 3D
model of Fig. 2 is about 11.6 m and the width of the cone’s
widest part (at the hub connection) is 5.8 m.

Fig. 5. Short time Fourier transforms of the scattered signals at 100 MHz
and monostatic view angles 0◦ (top row) and 50◦ (bottom row) and using
RCS simulations (left column) and the line scatterer model (right column).
Hamming window length is 512 samples and sampling frequency is 3333 Hz.

Fig. 6. Short time Fourier transforms of the scattered signals at 600 MHz
and monostatic view angles 0◦ (top row) and 50◦ (bottom row) and using
RCS simulations (left column) and the line scatterer model (right column).
Hamming window length is 512 samples and sampling frequency is 20 kHz.

Figure 4 compare the RCS time series at 100 MHz and
600 MHz and at three monostatic view angles of the RCS
simulations and the line scatterer model when the line scatterer
amplitude has been scaled using the fit of the median values.
The rotor rotates at 20 rpm. Figs. 5 and 6 shows the short
time Fourier transforms (STFT) of the corresponding signals
at two monostatic view angles using window lengths 0.1536
s and 0.0256 s respectively (giving the same Doppler scale)
and 50% overlap. The color scale (from -30 to 45) for each
time-Doppler-cell is in dBsm. The line scatterer signals and
their STFTs are more regular and less noisy than the RCS
simulations, but the average behavior is captured quite well.

IV. CAF SIMULATIONS

First thing to note when applying the line scatterer model
to realistic signal models is that the (8) returns the scattered
response of a single frequency f . A straightforward way
to apply the model to a signal which has some bandwidth
around a carrier frequency is to use the center frequency to
represent the response of the whole band and give it the full
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Fig. 7. Geometry for PCL simulation.

Fig. 8. Time sequence of CAF matrices with a wind turbine reflection.

transmit power. A more sophisticated method would compute
(8) for every discrete frequency separately with their share of
the transmit power and add the results. The first method is
demonstrated in this study.

The PCL simulation geometry was as follows. The receiver
was at the origin (0,0,0) km, transmitter at (10,0,0) km, and
the three blade wind turbine (marked by a ? in Figs. 7 and
8) at (5,5,1) km (xyz)-coordinates. The wind turbine blades
are aligned in the x-direction. The bistatic radar equation [11,
Ch. 2.3] was used to calculate the received signal gain without
other sources of signal attenuation. The signals were noiseless
and no direct path interference or clutter was added. The
wind turbine speed was set to 20 rpm (0.33 Hz) and blade
length was 85 m. Tx signal’s I/Q components were WGN.
The transmission power was 30 kW with center frequency
of fc = 600 MHz. The baseband’s bandwidth was 10 MHz.
The CAF matrices were obtained with T = 0.1 s integration
time [11, p. 132] . Fig. 8 shows the CAF matrices with their
corresponding start time of the integration period. The first
CAF displays the flash of the approaching blade, while the last
CAF shows the flash of the adjacent receding blade. When the
main flash of the blade occurs, a vertical line is visible with
sidelobes in the CAF and also a noticeable noise level increase.

V. CONCLUSIONS

A simple and fast line scatterer model for bistatic wind
turbine scattering was developed further in this paper to in-
clude all possible elevation angles. Numerical RCS simulations
were also used to develop a frequency dependent model for
realistically scaling the amplitude of the line scatterer. It was
observed that the mean and median RCS values over many
view angles increase roughly linearly in frequency and thus a
cylinder model was found suitable for describing it.

The line scatterer model was applied in a passive radar
signal processing simulation. The simulated CAFs demonstrate
that the blade flashes occur as dynamically changing clutter.

Unfiltered main flashes may cause significant sidelobes and
increase the noise level in the CAF.

The line scatterer model can be applied, for example, to
quickly estimate the performance of different radar systems in
various different scenarios and geometries with wind turbines.
The passive radar signal processing simulation can be used in
the development and testing of different adaptive digital clutter
removal algorithms, for example.
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Abstract—Anomalies in maritime surveillance operations are
often high-risk, and need to be detected quickly from real-
world, incoming data sources. Hence it is critical that we develop
unsupervised anomaly detection algorithms that both operate on
a data stream and adapt to it. Real-world maritime data streams
involve multiple, intersecting forms of concept drift, meaning that
the underlying data distribution changes over time. We introduce
DB-Drift, a novel algorithm for adapting existing density-based
unsupervised anomaly detection pipelines to handle gradual and
seasonal drift simultaneously.

Index Terms—Concept drift, maritime trajectories, anomaly
detection

I. MOTIVATION

Illegal activity plagues the world’s oceans. Illegal, un-
reported and unregulated (IUU) fishing [1]; dumping and
pollution [2]; and poorly managed eco-tourism [3] are a major
threat to the environment. Drug trafficking and other forms of
smuggling are a constant concern, and maritime piracy and
armed robbery menace shipping routes around the world [4].
Perhaps most alarming are terrorist activities in coastal waters:
smuggling fighters, weapons and other materials in spite of the
best efforts of nations world wide [5]. The high-risk nature of
these threats means that identifying anomalous vessel behav-
iors at sea is critical to national and international security,
however the sheer volume of maritime traffic data means that
maritime surveillance cannot be executed by domain experts
alone. The first step in many maritime surveillance pipelines
is unsupervised anomaly detection (UAD) algorithms.

Creating robust UAD algorithms in this sphere is a lively
field of research–excellent surveys of recent advances can be
found in [6] [7]. In spite of these advances, a distinct maritime
component has been left out of many models for UAD at sea:
concept drift.

Fundamentally, concept drift describes how the underly-
ing distribution of data changes over time. Capturing these
changes is critical for unsupervised anomaly detection algo-
rithms, because UAD is typically executed by creating an
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underlying ”normal” model, and then identifying outliers with
respect to this norm. If the data majority changes and the
associated normal model does not, outliers captured with
respect to this inaccurate normal model are less likely to
be truly anomalous–and true anomalies are less likely to be
captured. In maritime settings, the underlying distribution of
vessels changes constantly in a variety of ways. Hence UAD
models in maritime settings must also evolve in a variety of
ways. This is a critical gap in the state-of-the-art. In this paper
we fill this gap by introducing DB-Drift, a density based UAD
algorithm that accounts for both seasonal and gradual drift.
This is the first algorithm that addresses multiple forms of
concept drift simultaneously for UAD at sea.

II. BACKGROUND

A. Density-based clustering for maritime outlier detection

The goal of this work is to improve existing maritime
UAD pipelines by incorporating concept drift. To do this, we
target a specific component common to many such pipelines:
DBSCAN (Density-based spatial clustering of applications
with noise) [8]. DBSCAN is a ubiquitous tool because it can
automatically identify outliers, has few hyperparameters, and
does not need a pre-set number of clusters (unlike k-means). In
the vessel tracking sphere, DBSCAN is typically incorporated
in one of two ways. First, clustering individual vessel points
to extract standard geographic sea routes (and outliers with
respect to those routes) [9] [10]. Second, detecting anomalous
vessel trajectories by using DBSCAN’s automatic outlier de-
tection on trajectory feature vectors [11] [12] [13]. We focus
on the the latter application of DBSCAN.

B. Maritime Concept Drift

Many different forms of concept drift arise and intermingle
in real-world data [14]. Important study [15] demonstrated the
impact of gradual and seasonal drifts on vessel traffic data.
These two types of drift are the focus of our work.

Gradual drift is the most well-understood form of concept
drift. It refers to the small, incremental shifts in the underlying
distribution of normal data over time. Seasonal drift refers
to distributional behaviors that reoccur in a periodic fashion.
Because the ocean is affected by literal meteorological sea-
sons, [15] showed that vessel traffic behavior is also highly
seasonal–particularly on a monthly scale.
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C. Density-based clustering and concept drift: prior work

Much state-of-the-art development for UAD under con-
cept drift has been benchmarked on cybersecurity applica-
tions, which are strongly impacted by gradual concept drift
[16]. This has given gradual drift adaption for density-based
clustering a solid foundation of work. One of the simplest
and most commonly used versions compensates for gradual
drift by retraining DBSCAN over a sliding window model.
More sophisticated techniques use the damped window model,
which re-weights and fades the sample data at a user defined
rate. Examples include many incremental streaming models for
density-based clustering, such as DenStream [17], D-stream
[18], DB-stream [19], and TSF-DBSCAN [20].

However, state-of-the-art is biased toward addressing drifts
specific to its driving applications. Thus, there has been little
work addressing seasonal drift for density-based clustering
UAD. We are aware of one work that supports our pre-
liminary algorithmic adaptation in [21]. This work focuses
on atmospheric data and briefly discusses the advantages of
assigning a separate clustering model to each 28-day period
(a recurrent season) for subsequent years of data. The general
idea of assigning each seasonal concept its own model is also
described in [22]. Developing UAD algorithms under drift for
highly seasonal applications–such as maritime surveillance–is
critical to advancing the state of the art.

III. THE DB-DRIFT ALGORITHM

A. Understanding DenStream

We now discuss the mechanics of our proposed algorithm.
To understand DB-Drift, we must first understand a critical
building block: DenStream [17]. DenStream is particularly
valuable in the UAD context because it is able to identify
outliers in real-time [23].

DenStream is executed by creating and updating micro-
clusters called p-microclusters (the normal model) and o-
microclusters (the outlier model). We denote the sets of p-
microclusters and o-microclusters at time t by Pt and Ot

respectively. For a given microcluster o, we denote T0(o) to
be the microcluster initialization time. These microclusters
evolve over time as samples are added and as the points are
reweighted according to the damped window model. The rate
at which samples fade is determined by fade factor λ. If the
input time for a given sample x is given by T (x) then the
weight of sample x at time t is 2−λ(t−T (x)). In the original
DenStream algorithm, an offline step for microcluster merging
is periodically executed. Because this step is irrelevant to the
online outlier detection component, we do not include it.

We summarize the overarching procedure for DenStream
for outlier detection in Algorithm 1. Details for computing
the microcluster radius and weight can be found in [17].

B. DB-Drift

The DB-drift algorithm is summarized in figure 1. In the
first step, vessel data points are received from maritime surveil-
lance data and fed as a stream into a trajectory assembler
(such as Sandia National Laboratories’ Tracktable module

Algorithm 1 DenStream for outlier detection at time t

Parameters: Max radius ϵ, minimum p-microcluster weight
µβ, pruning stepsize Tp

λ← 1/Tp ∗ log2(βµ/(βµ− 1))
for each sample x s.t. T (x) = t do ▷ Merge step

Find the nearest p-microcluster p∗t ∈ Pt.
if radius of {p∗t , x} ≤ ϵ then

Add x to p∗t
else

Report the outlier score as minp∗
t∈Pt∥x− c(p∗t )∥

Find the nearest o-microcluster o∗t ∈ Ot

if radius of {o∗t , x} ≤ ϵ then
Add x to o∗t
if weight w(o∗t , t) > µβ then

Move o∗t from Ot to Pt

else
Add {x} to Ot as a new o-microcluster.

if t % Tp == 0 then ▷ Pruning step
for p ∈ Pt do

if w(p, t) ≤ µβ then
Remove p from Pt

for o ∈ Ot do
if w(o, t) ≤ ξ(t, Tp, o) =

2−λ(t−T0(o)+Tp)−1

2−λTp−1
then

Remove o from Ot

[24]) which processes the data points to form a trajectory (see
section IV-B).

In step two, we extract n-features (see section IV-C for
examples) from the input trajectory and feed them as a sample
vector x at time T (x) into our outlier detector. We split our
model into two DenStream based outlier-scorers: one model
under gradual drift and one model under seasonal drift.

Our critical contribution comes from steps three and four.
In step three, we evolve multiple layers of cluster-sets via
separate DenStream models which each capture a different
kind of drift over time. In the current version of our algorithm,
we consider two sets of evolving clusters.

For the gradual model layer, we set a small Tp,g (corre-
sponding to fade factor λg) so that recent samples are weighted
more heavily (and older samples fade more quickly).

The seasonal model layer assigns a separate clustering to
each season in our recurrent drift model. In our initial imple-
mentation of this drift model—here for actual meteorological
seasons—a separate DenStream clustering is specifically as-
signed to each month of the year, and the outlier score for a
new trajectory is reported only with respect to the month to
which it belongs. It is important that each month has its own
DenStream model since seasons themselves can also evolve
over time—albeit at a typically slower rate. Hence we set
Tp,s (corresponding to fade factor λs) to be larger. While this
algorithm is designed to take advantage of known seasonal
behavior, an ongoing area of work is incorporating season
discovery for unknown underlying seasonal trends.

In step four, the combined outlier score for sample x at time
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Fig. 1. The structure for the DB-Drift Algorithm.

t = T (x) is given by

Ô(x) = wg min
gt,i∈Gt

∥x−c(gt,i)∥+ws min
st,i∈St

∥xt−c(st,i)∥ (1)

Here wg and ws are the outlier-score weights for the gradual
and seasonal models. Gt is the set of gradual p-microclusters
at time t, St is the set of seasonal p-microclusters at time t,
and c(·) is the center of a given microcluster. In our examples
we set ws = 2/3, wg = 1/3 because we are interested in
seasonal anomalies.

The outlier score is then compared to a threshold θ, s.t. if
Ô(x) > θ then x is included as part of the output anomaly
subset, which is passed to an expert for further assessment.
This threshold is important, because it allows us to consider
the most anomalous points with respect to both seasonal and
gradual drift. If an anomaly is captured by only the seasonal
model, it must be a strong seasonal anomaly to be included
in the anomaly subset. This principle similarly applies to
anomalies identified by only the gradual model.

C. Setting hyperparameters

In real-world pipelines, anomaly detection is used to make
decisions–for example, deploying law enforcement to intercept
illegal activity or developing overarching policy to counter
illegal behaviors. Thus real-world UAD pipelines must almost
always involve domain expertise. We note that by domain
expertise, we refer to not only domain expert researchers but
expert algorithms that may be prohibitively expensive to run
on large maritime data sets.

This means that the goal of the UAD algorithm is twofold:
to find anomalies from data that an expert would otherwise be
unable to identify; and to process quantities of data that are
too large for domain expert or expert algorithm to parse. The
goal for our algorithm is to return an expert-tractable ”anomaly
subset” that contains the samples of interest. Hyperparameter
tuning in this context can be simplified to choosing hyper-
parameters that deliver a certain size or percentage anomaly
subset. It is then the role of feature selection to maximize the
number of ”true anomalies” captured by the anomaly subset
of the desired size.

For this algorithm, we consider these hyperparameters:

1) ϵs, ϵg: The maximum p-microcluster radius for the grad-
ual and seasonal models respectively. In a true online setting,
we would choose these epsilon values using prior historical or
burn-in data that yield anomaly subsets of the desired size (for
full historical data we tune ϵs, ϵg post hoc). We then set the
ϵs, ϵg to be slightly smaller than these derived values (leading
to a slightly larger percentage of outlier scores > 0), and
focus on updating our minimum threshold θ to maintain the
appropriate output percentage of outliers.

2) µ, β: The minimum weight for a microcluster to be
considered a p-microcluster. Following other implementations
of DenStream, we set µ = 10, β = .25, µβ = 2 for both the
seasonal and gradual models.

3) θ: The minimum threshold for sample x at time T (x)
to be considered an outlier (namely Ô(x) ≥ θ).

Let r be the desired percentage of the data set to return
as an anomalous subset. Let Q(X, q) be the q′th sample
quantile for a set of scalar values X . Select a sample time
period [ti, tj ] to determine θ for incoming points. Denote
nti,tj = |{x}T (x)∈[ti,tj ]| to be the number of samples during
period [ti, tj ]. Let n̂ti,tj = |{Ô(x) > 0}T (x)∈[ti,tj ]| be the
number of samples x with outlier score Ô(x) > 0 input during
period [ti, tj ]. Then we define θtj

θi,j =

{
Q({Ô(x) > 0}T (x)∈[ti,tj ], 1− qi,j) qi,j < 1

0 otherwise

qi,j = (nti,tjr)/n̂ti,tj )
(2)

This θi,j can then be used as a threshold for incoming points
until the next update. The length of the periods between θ
updates and the amount of historical data used to determine
θ are set by the user. For our experiments, we set θ for each
incoming month using the samples from the month prior.

4) Tp,g, Tp,s: Pruning periods for the gradual and seasonal
models respectively. These are the smallest possible amounts
of time before a microcluster can be pruned, and are used
to determine the corresponding fade factors λg, λs for each
model (see Algorithm 1). Because we want the gradual model
to evolve rapidly, we recommend setting Tp,g = 7 days.
Because we want to retain monthly cluster information from
one year to the next, we recommend setting Tp,s = 30 days.
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IV. EXPERIMENTING WITH DB-DRIFT

We now describe the details for experimenting with DB-
Drift on real-world data, and present a promising initial result.

A. Automatic Identification System Data

While maritime vessel trajectories can be extracted from
many different signals and sources, one of the most com-
mon is via the Automatic Identification System (AIS). Ships
fitted with AIS consistently broadcast static vessel infor-
mation (MMSI, vessel type, IMO, length, and width) and
dynamic vessel information (time, latitude, longitude, course
over ground (COG), speed over ground (SOG), and heading).
AIS was designed to prevent collisions at sea, and is publicly
broadcast by almost all large vessels. Public research for
anomaly detection at sea is frequently performed on AIS data
alone or AIS data fused with other data sources.

B. Data Processing

For our experiments, we consider historical AIS data
from 2017-2020 off of the coast of Hawaii, compiled from
MarineCadastre.gov [25]. We define a bounding box from -
161.70558 to -152.98331 longitude and 24.07175 to 18.13869
latitude. UAD models are typically tailored to a particular
vessel class. In this example we consider all fishing vessels.

We form trajectories from these AIS points in the following
way. First, we group all AIS points by their unique 9 digit
maritime identifier (MMSI) and sort them by timestamp. We
remove all points associated with non-valid MMSI values and
all duplicate points. If the time between two successive points
is greater than 30 minutes, the trajectory is split. This trajectory
set is then pruned–removing all trajectories with < 5 points or
with a convex hull area < .2 km (stationary trajectories). After
processing, our data set consists of 13,370 fishing trajectories
with a total of 20,814,228 AIS points.

C. Feature extraction

A study in [26] analyzes the many geometric and kinematic
features that can be used to classify trajectories. We use the
following features for our trajectories: sinuosity, number of
stops, k=1 distance geometry, convex hull perimeter, maximum
speed, and medium-low speed proportion. See tables 2 and 3
of [26] for the explicit definitions for these features.

To calculate the number of stops we set the max stop speed
ms = 1 knots and the minimum stop segment length to be
mt = 5 minutes. All speed values were computed using
speeds derived from the location and time-stamp data rather
than reported speed over ground data (which is highly prone
to noise and errors). Because these features have inherently
different scales, they must be standardized (to mean 0 and
variance 1) before input.

In this example, features are extracted from trajectories as
they are completed (when a subsequent AIS point has not
been received for 30 minutes). Depending on real-world user
needs and detection scenarios, this pipeline can be adjusted to
extract features for incoming trajectory segments–where the
corresponding trajectories are ongoing.

D. Comparison

1) Sliding Window DBSCAN: The goal of this work is
to show how maritime UAD pipelines with a DBSCAN
or density based clustering component can be improved by
incorporating concept drift into that component. In our results,
we consider the outlier-detection behavior of DB-Drift verses
its commonly used counterpart: sliding window DBSCAN.

Sliding window DBSCAN works as follows: trajectory
feature vectors over a given training window size are clustered
using static DBSCAN. For a subsequent prediction window,
points are labeled outliers if their distance to the closest
DBSCAN cluster is > ϵ, where ϵ is the neighborhood radius of
the static DBSCAN cluster set. When the end of the prediction
window is reached, the training window shifts forward by
the length of the prediction window, and the static DBSCAN
clustering is retrained. For our experiments we varied the
training window sizes at 2 weeks, 3 weeks, 4 weeks, and 8
weeks and kept a constant prediction window of 1 week.

Note that as we increase the size of the sliding window, the
memory cost of storing and processing the associated training
points increases and can become prohibitive, especially for
feature vectors with high dimensionality. Because DB-Drift
is built using DenStream, it only needs to store the micro-
cluster attributes–centers, radii, and total weights –associated
with the gradual and seasonal models respectively. This has
significantly lower memory cost.

2) Choosing Hyperparameters: We choose the hyperpa-
rameters for DB-Drift following section III-C. To update
threshold θ we set desired subset percentage r = 7%. We
chose ϵs, ϵg s.t. the models returned around 11% of the
data in the anomaly subset. Using our threshold updating
technique and combined outlier score, the final ”anomaly
subset” constituted ≈ 7.5% of the data set. This shows that
our threshold technique correctly regulated the output.

To be able to compare sliding window DBSCAN and DB-
Drift, we chose DBSCAN ϵ values that returned anomaly
subsets of the same size as as DB-Drift (approximately 7.5%
of the data). The minimum cluster sample number for sliding
window DBSCAN was set to 4.

E. Results

Evaluating anomaly detection algorithms for AIS data is
uniquely difficult because there are no publicly available
vessel track data sets with labeled anomalies [27] [6]. As
such, we have used publicly available reports from the US
Coast Guard and various news sources to compile a case-
study-based subset of 105 fishing trajectories corresponding
to 74 real maritime incidents. This case-study subset does not
capture all anomalies, but gives a starting point to analyze the
improvements of our algorithm on a form of ground truth.
These incidents were primarily derived from US Coast Guard
incident investigation reports (IIR) [28], which cover a wide
range of incidents at sea. Thus we do not expect every anomaly
to be captured by the limited feature set used in our examples–
UAD trajectory feature selection based on USCG IIR would
be an interesting subject for another paper.
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TABLE I
ALGORITHM BEHAVIOR ON REAL-INCIDENT CASE STUDIES

Method # of real incidents captured Intersection with DB-Drift
DB-Drift 22 22

DBSCAN 2w 14 13
DBSCAN 3w 17 15
DBSCAN 4w 17 14
DBSCAN 8w 18 14

We obtained the following results in table I. In this ex-
periment, we see that increasing the size of the window
for sliding-window DBSCAN allows it to capture more real
incidents–albeit at the cost of a longer burn in period and
higher memory overheads. DB-drift still captures almost all of
the same real-world incidents discovered by sliding window
DBSCAN, with lower memory requirements and a burn in
period of typically only a few days. We also see that DB-
Drift is overall able to capture more real-world incidents than
sliding window DBSCAN for all window sizes. This suggests
that adding multiple forms of drift can indeed improve density
based clustering methods for maritime surveillance.

V. CONCLUSION AND FUTURE WORK

For high risk applications like maritime surveillance, it is
critical that UAD pipelines be robust. This means that for data
where multiple forms of concept drift are present, multiple
forms of concept drift must be addressed. We introduced DB-
Drift, the first algorithm to incorporate both gradual and sea-
sonal concept drift into density based clustering for anomaly
detection on vessel trajectories. We demonstrated how DB-
Drift can be used on real-world data and showed a promising
first result. Future work includes demonstrating the behavior
of DB-Drift on additional data sets and also demonstrating
the behavior of DB-Drift when used in place of DB-SCAN in
existing pipelines.

We are also currently investigating ways to incorporate
another important form of drift–abrupt drift–into DB-Drift.
Abrupt drift describes a sudden shift in the underlying dis-
tribution that typically manifests as an outlier itself but is
characterized as drift when the shift persists. By adding an
explicit abrupt drift detector for our model, DB-Drift would
not only be robust to gradual and seasonal drifts but would be
able to quickly compensate for sudden shifts in the underlying
distribution of the data.
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