Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

Low energy (adiabatic) computing

Dr. Alexander Serb

Reader in unconventional AI hardware

Univ. of Edinburgh

The Centre for Electronics Frontiers (CEF)

Mission statement: "Our ambition is to push the frontiers of electronics through innovating emerging Nanoelectronic Technologies."

Novel AI hardware

"CEF brings together diverse expertise ranging from materials science and electronic devices to circuits and systems for transforming modern society through technology."

At CEF we design and build microchips

Hardware power is a fundamental issue

Editorial | Published: 17 April 2018

Does AI have a hardware problem?

FORBES > INNOVATION > CONSUMER TECH

Nature Electronics 1, 205 (2018) Cite this article

8049 Accesses | **12** Citations | **46** Altmetric | Metrics

As deep neural networks continue to improve and grow, in required in order to meet the increasing computational d

https://www.nature.com/articles/s41928-018-0068-2

ComputerWeekly.com

over" that amount.

Rising energy costs colocation datacent

As a result, more than half of the UK par https://www.iea.org/reports/data-centres-and-data-transbetween 10-to-30% of their total operating costs, while a further 25% said they are paying "well

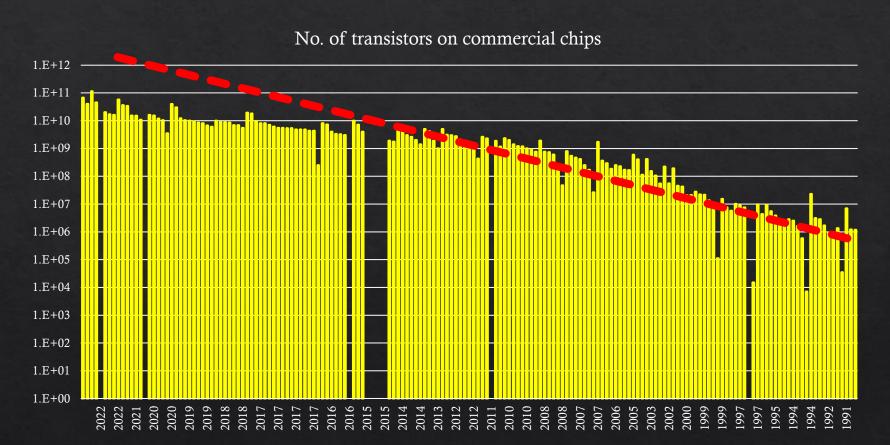
https://www.computerweekly.com/news/252523862/Rising-energy-costs-erode-competitive-edge-of-colocation-datacentre-operators

Global trends in digital and energy indicators, 2015-2021

	2015	2021	Change
Internet users	3 billion	4.9 billion	+60%
Internet traffic	0.6 ZB	3.4 ZB	+440%
Data centre workloads	180 million	650 million	+260%
Data centre energy use (excluding crypto)	200 TWh	220-320 TWh	+10-60%
Crypto mining energy use	4 TWh	100-140 TWh	+2 300-3 300%
Data transmission network energy use	220 TWh	260-340 TWh	+20-60%
https://www.iea.org/reports/data-centres-and-data-transmission-networks			

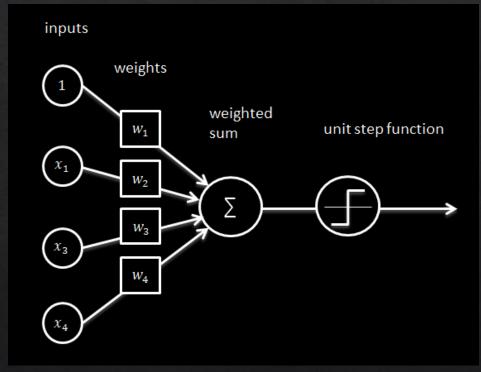
irns Millions Every mputer Scientists e Million Times ent?

Forbes

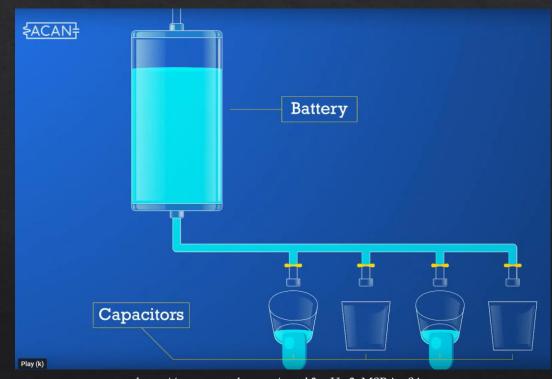

ites/johnkoetsier/2023/02/10/chatgptn-computer-scientists-make-ai-one-million-

Data centres and data transmission networks are responsible for nearly 1% of energy-related GHG emissions

https://www.iea.org/reports/data-centres-and-data-transmission-networks



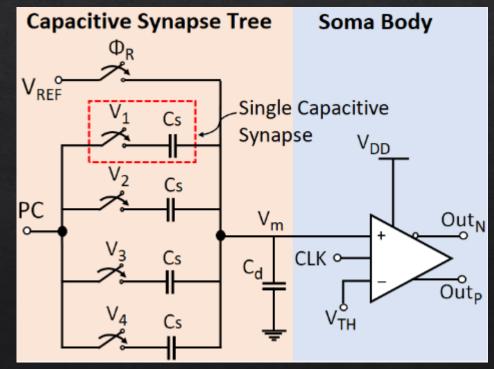
Conventional solutions are beginning to falter



Adiabatic computing: counting charge buckets

https://towards datascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a

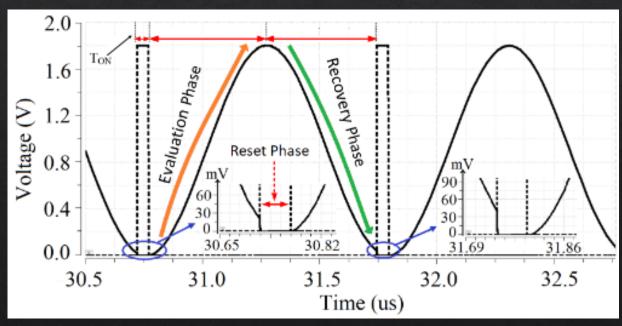
https://www.youtube.com/watch?v=Uw2qMSRAmS4



https://www.youtube.com/watch?v=Uw2qMSRAmS4

An adiabatic neuron in practice

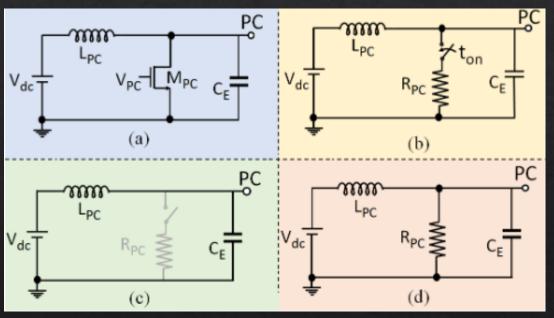
- ♦ Adiabatic component...
 - ♦ Synapses made of capacitors.
 - ♦ Switches made of TGs.
 - ♦ "Reset to reference" path.
 - May include a damping capacitor.
- ♦ ...and non-adiabatic component.
 - ♦ Contains a neural soma...
 - ♦ ...which is a strong-arm comparator.
- ♦ Note that "PC" terminal on the left...


https://ieeexplore.ieee.org/abstract/document/9799538

A closer look at adiabatic operation

- ♦ 3x-phase operation:
- Evaluation phase:

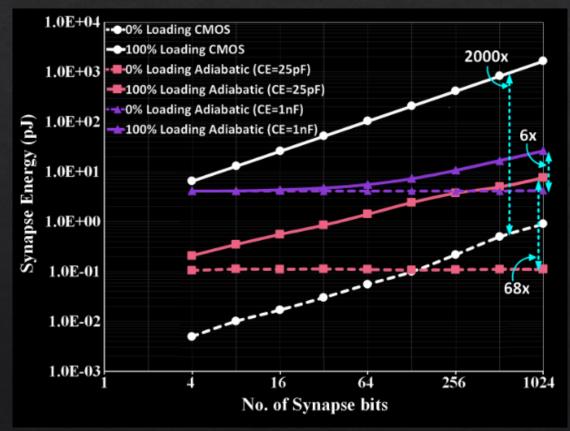
 - ♦ System samples comparator at peak.
- Recovery phase:
 - ♦ "The tides ebbs".
 - ♦ At the stroke of the clock reset triggers.
- Reset phase:
 - ♦ The power clock is hard-reset.



https://ieeexplore.ieee.org/abstract/document/9799538

Outside the chip: the power supply

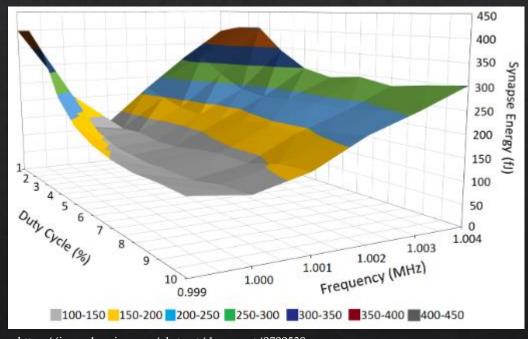
- ♦ Adiabatic circuits require adiabatic power supplies...
- Easiest approach: an LC resonator with a by-pass switch.
- During evaluation and recovery phases behaves as LC tank...
- ...and during reset the RC dominates and discharges "quickly".



https://ieeexplore.ieee.org/abstract/document/9799538

What can the technology do?

- ♦ Ideally suited for artificial neural networks
- ♦ Up to 90% power reduction vs. like-forlike non-adiabatic circuit
- "Makes 180nm CMOS look like 65nm"
- Working on a proof-of-concept demonstrator (in 180nm technology)
- ♦ How well do these techniques downscale to 22nm and below?
- What is the actual saving in a full-size ANN?


https://ieeexplore.ieee.org/abstract/document/9799538

A closer look at key results

Some important considerations:

- ♦ This version of ACNNs requires a fine balance between operating frequency and reset duration.
- ♦ Sensitivity is much higher to frequency than to reset duration.
- Operating frequency depends on loading.
- It is possible to get the system to "hunt"
 for the best frequency as the load varies.

https://ieeexplore.ieee.org/abstract/document/9799538

Towards real applications

- ♦ Begin with a simulator in Minecraft.
- ♦ Fixed camera angle, player follows arrows.
- ♦ Achieved using 16x neurons and 816 synapses with appropriately quantised weights.
- ♦ Correct answers 99% of the time.
- ♦ Requires ~3.7k minimum capacitances.
- Next challenge: implement this on-chip.

Adiabatic computing in defence

Adiabatic computing around defence

Thank you for your attention

Dr. Alexander Serb

Reader in Unconventional AI Hardware Technologies

School of Engineering | University of Edinburgh

Email: aserb@ed.ac.uk

Personal webpage: https://www.eng.ed.ac.uk/about/people/dr-

alexantrou-serb

Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

