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I. Motivation

• Track without initial state belief

• Model-free approach 

: Received signal strength (RSS) measurement

: Location of this measurement at time 𝑡

: Measurement noise,   : :Unknown latent function

Aim
Search and track the target without state transition model and initial 
state belief, only using the RSS measurement



II. Background of Bayesian Optimisation

1. Gaussian Process: Surrogate model of the unknown function

2. Acquisition function: Expected improvement (EI)

Define the object of interest first      measurements as

The EI function can be defined as

where 𝜙(⋅) and Φ(⋅) denote the probability density function and cumulative density 

function of the standard Gaussian distribution, respectively.

ExploitationExploration



II. Background of Bayesian Optimisation

1. Gaussian Process: Surrogate model of the unknown function

▪ A Gaussian Process (GP)  is a stochastic process defining a 

distribution over possible functions that fit a set of points.

▪ The computational complexity is O(𝑛3). 

𝑓 𝑥 ~𝐺𝑃(𝑚 𝑥 , 𝑘(𝑥, 𝑥′))

𝑚(𝑥∗) = 𝐊∗ 𝐊 + 𝜎2𝐈 −1𝐲

𝑘(𝑥, 𝑥∗) = 𝐊∗∗ − 𝐊∗ 𝐊 + 𝜎2𝐈 −1𝐊∗
⊤



II. Background of Bayesian Optimisation

Acquisition function: Expected improvement (EI)

• Optimisation problem (sensor management)

Find the maximum of the unknown function

• Exploration-exploitation (EE) tradeoff

▪ Where and when to place the UAV to measure RSS

▪ Locate the target with minimum number of 

measurements

ExploitationExploration



III. Efficient BO with GP Factorisation

Gaussian Process: Surrogate model of the unknown function

• Modelling the dynamic function: spatial-temporal kernel

• Kernel design: Design spatial-temporal composite kernel function 

to account for the time-varying and non-stationary nature of the 

received signal strength map

𝑘 𝐱𝑡 , 𝑡 , 𝐱𝑡
′ , 𝑡′ = 𝑘S,Con 𝐱𝑡 , 𝐱𝑡

′ + 𝑘S,SE 𝐱𝑡 , 𝐱𝑡
′ ⋅ 𝑘T,Mat 𝑡, 𝑡′
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III. Efficient BO with GP Factorisation

Gaussian Process: Surrogate model of the unknown function

▪ The computational complexity is O(𝑛3).

▪ Inducing points-based method 

▪ Hierarchical off-diagonal low-rank 

(HODLR) factorisation method



III. Efficient BO with GP Factorisation

➢ The matrixes 𝐊 are the dense parts.

➢ The off-diagonal blocks are compressed into the “tall” and “thin” 𝑈 and 

𝑉 matrixes via low-rank approximation

The dense covariance matrix can be hierarchically factored into a product 

of block low-rank updates of the the identity matrix. This is called the 

hierarchical off-diagonal low-rank (HODLR) factorisation.
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III. Efficient BO with GP Factorisation

• Adaptive Cross Approximation decomposition O(𝑟𝑛). 

• The computational complexity is O(𝑟𝑛 log2𝑛 +𝑛 log 𝑛). 

• Low-rank approximation would remain the main spectral features, which is 

efficient in the most off-diagonal covariance matrix. (𝑟 ≪ 𝑛)

A ≈ U

V

×

𝑚 × 𝑛
𝑟 × 𝑚

𝑟 × 𝑛



Multi-agent BO 

• In order to schedule multiple UAVs for 

search and tracking, the multi-point EI 

method is utilised to determine the 

measuring locations of UAVs sequentially:

• Constant liar approximation is used to 

sequentially solve the multi-point EI

Stage 1

Stage 2

Stage 3



IV. Numerical Results: Settings

• Log-distance path loss model:

• Area of interest: 400*400 m2

• Target motion model: Constant velocity with initial state as 

[50𝑚, 1𝑚/𝑠, 50,1𝑚/𝑠]

• Benchmarks: 1) Proposed kernel used in GP with Cholesky 

factorisation; 2) Proposed kernel used in GP with HOLDR 

factorisation

[1] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, “Bayesian optimization for dynamic problems,” arXiv preprint 
arXiv:1803.03432, 2018.

,𝑦0,𝑡𝑖
= -50dBm, ∀𝑡𝑖 ∈ 𝑇, 𝜂 = 3



IV. Numerical Results: Running Time

Per-step running time based on:     

• GP with Cholesky 

factorisation

• GP with HODLR factorisation



IV. Numerical Results: Error

➢ HODLR factorisation helps to improve the efficiency of the proposed 

approach.



V. Conclusions and Future Plan

➢ Conclusions

Efficient, factorized GP methods are developed for sensor 

scheduling and tracking in sensor networks

▪ Sensor scheduling can be integrated into sensor networks for efficient sensor 

management

➢ Future plan

▪ Improve the efficiency of Bayesian optimisation for sensor management and 

tracking: 1) Path planning for UAVs; 2) Error bound-assisted searching; 3) 

Extend the proposed approach to a heterogeneous sensor network case study
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