Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

University Sheffield.

Joint Sensor Scheduling and Target **Tracking with Efficient Bayesian Optimisation**

Xingchi Liu*, Chenyi Lyu*, Seyed Ahmad Soleymani, Wenwu Wang, Lyudmila Mihaylova

Email: xingchi.liu@sheffield.ac.uk, clyu5@sheffield.ac.uk, s.soleymani@surrey.ac.uk,

w.wang@surrey.ac.uk, l.s.mihaylova@sheffield.ac.uk,

*Equal contribution

Outline

- I. Motivation
- II. Background of Bayesian Optimisation
- III. Efficient Bayesian Optimisation with Gaussian Process Factorisation
- IV. Numerical Results
- V. Conclusions and Future Plan

I. Motivation

• Model-free approach

 $y = f(\mathbf{x}_t, t) + \epsilon$

- y: Received signal strength (RSS) measurement
- \mathbf{x}_t : Location of this measurement at time t
- ϵ : Measurement noise, $f(\mathbf{x}_t,t)$: Unknown latent function

Aim Search and track the target without state transition model and initial state belief, only using the RSS measurement

II. Background of Bayesian Optimisation

1. Gaussian Process: Surrogate model of the unknown function

 $f(\mathbf{x}_t, t) \sim \mathcal{GP}\left(m(\mathbf{x}_t, t), k((\mathbf{x}_t, t), (\mathbf{x}'_t, t'))\right)$

2. Acquisition function: Expected improvement (EI)

Define the object of interest first n_t measurements as $\tau_{n_t} = \max_{i \in n_t} \mathbf{y}_{t_i}$ The EI function can be defined as

where $\phi(\cdot)$ and $\Phi(\cdot)$ denote the probability density function and cumulative density function of the standard Gaussian distribution, respectively.

II. Background of Bayesian Optimisation

1. Gaussian Process: Surrogate model of the unknown function

 $f(\mathbf{x}_t, t) \sim \mathcal{GP}\left(m(\mathbf{x}_t, t), k((\mathbf{x}_t, t), (\mathbf{x}'_t, t'))\right)$

 A Gaussian Process (GP) is a stochastic process defining a distribution over possible functions that fit a set of points.

 $f(x) \sim GP(m(x), k(x, x'))$

 $m(x_*) = \mathbf{K}_* (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$

 $k(x, x_*) = \mathbf{K}_{**} - \mathbf{K}_* (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_*^{\mathsf{T}}$

• The computational complexity is $O(n^3)$.

II. Background of Bayesian Optimisation

Acquisition function: Expected improvement (EI)

$$EI(\mathbf{x}_{t}, t) \coloneqq \mathbb{E}[[f(\mathbf{x}_{t}, t) - \tau_{n_{t}}]^{+}],$$

= $\sigma(\mathbf{x}_{t}, t)\phi\left(\frac{\mu(\mathbf{x}_{t}, t) - \tau_{n_{t}}}{\sigma(\mathbf{x}_{t}, t)}\right) + (\mu(\mathbf{x}_{t}, t) - \tau_{n_{t}})\Phi\left(\frac{\mu(\mathbf{x}_{t}, t) - \tau_{n_{t}}}{\sigma(\mathbf{x}_{t}, t)}\right),$
Exploration Exploitation

- Optimisation problem (sensor management) Find the **maximum** of the unknown function
- Exploration-exploitation (EE) tradeoff
 - Where and when to place the UAV to measure RSS
 - Locate the target with minimum number of measurements

Gaussian Process: Surrogate model of the unknown function

 $f(\mathbf{x}_t, t) \sim \mathcal{GP}\left(m(\mathbf{x}_t, t), k((\mathbf{x}_t, t), (\mathbf{x}'_t, t'))\right)$

• Modelling the dynamic function: spatial-temporal kernel

$$k((\mathbf{x}_t, t), (\mathbf{x}'_t, t')) = (k_{S,Con}(\mathbf{x}_t, \mathbf{x}'_t) + k_{S,SE}(\mathbf{x}_t, \mathbf{x}'_t)) \cdot k_{T,Mat}(t, t')$$

 Kernel design: Design spatial-temporal composite kernel function to account for the time-varying and non-stationary nature of the received signal strength map

The University Of Sheffield.

• Modelling the dynamic function: spatial-temporal kernel

$$k((\mathbf{x}_t, t), (\mathbf{x}'_t, t')) = (k_{S,Con}(\mathbf{x}_t, \mathbf{x}'_t) + k_{S,SE}(\mathbf{x}_t, \mathbf{x}'_t)) \cdot k_{T,Mat}(t, t')$$

 Kernel design: Design spatial-temporal composite kernel function to account for the time-varying and non-stationary nature of the received signal strength map

$$k_{\mathrm{S,Con}}(\mathbf{x}_t,\mathbf{x}_t')=\Phi,$$

$$k_{\text{S,SE}}(\mathbf{x}_t, \mathbf{x}_t') = \sigma_m^2 \exp\left(-\|\mathbf{x}_t - \mathbf{x}_t'\|^2 / l^2\right)$$

$$k_{\mathrm{T,Mat}}(t,t') = \sigma_m^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}\|t-t'\|}{l}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}\|t-t'\|}{l}\right)$$

Gaussian Process: Surrogate model of the unknown function

 $f(\mathbf{x}_t, t) \sim \mathcal{GP}(m(\mathbf{x}_t, t), k((\mathbf{x}_t, t), (\mathbf{x}'_t, t')))$

- The computational complexity is $O(n^3)$.
- Inducing points-based method
- Hierarchical off-diagonal low-rank (HODLR) factorisation method

The dense covariance matrix can be hierarchically factored into a product of block low-rank updates of the the identity matrix. This is called the hierarchical off-diagonal low-rank (HODLR) factorisation.

- The matrixes K are the dense parts.
- The off-diagonal blocks are compressed into the "tall" and "thin" U and V matrixes via low-rank approximation

• Low-rank approximation would remain the main spectral features, which is efficient in the most off-diagonal covariance matrix. ($r \ll n$)

- Adaptive Cross Approximation decomposition O(rn).
- The computational complexity is $O(rn \log^2 n + n \log n)$.

Multi-agent BO

 In order to schedule multiple UAVs for search and tracking, the multi-point EI method is utilised to determine the measuring locations of UAVs sequentially:

 $EI_n(x_t^{1:q}, t^{1:q}) \coloneqq \mathbb{E}[[\max_{i=1,...,q} f(\mathbf{x}_t^i, t^i) - \tau_{n_t}]^+]$

 Constant liar approximation is used to sequentially solve the multi-point EI Algorithm 1 BO-assisted active sensing management

Require: Prior surrogate model *GP*₀, initial data *D*₀, UAV number *K*1: while t_i < T do

Stage 1
$$-$$
 2: Receive the *K* RSS measurements
Set the time stamp $t_i = \max\{t_i^1, t_i^2, \dots, t_i^K\}$
Augment data $\mathcal{D}_i \leftarrow \mathcal{D}_{i-1} \cup \{\mathbf{x}_{t_i}^k, t_i^k, y_{t_i}^k\}_{k=1}^K$
Stage 2 \leftarrow 5: Update \mathcal{GP}_i
Set the start time stamp $t_s \leftarrow t_i + \psi$
Update search bound of time scale as $\mathbf{t} = [t_s, t_s + \gamma]$
Betermine $\{\mathbf{x}_{t_{i+1}}^k\}_{k=1}^K$ and $\{t_{i+1}^k\}_{k=1}^K$ by sequentially maximising AF as follows:

$$\{\mathbf{x}_{t_{i+1}}^k, t_{i+1}^k\} = \operatorname*{arg\,max}_{\mathbf{x}_t \in \mathcal{X}, t \in \mathbf{t}} \alpha^k(\mathbf{x}_t, t)$$

9: Send the UAVs to measure the RSSs at $\{\mathbf{x}_{t_{i+1}}^k, t_{i+1}\}_{k=1}^K$ 10: $i \leftarrow i+1$ 11: **end while**

IV. Numerical Results: Settings

• Log-distance path loss model:

 $y_{t_i} = y_{0,t_i} - \eta \log_{10}(d_{t_i}) + \epsilon_{t_i}$, y_{0,t_i} = -50dBm, $\forall t_i \in T, \eta = 3$

- Area of interest: 400*400 m²
- Target motion model: Constant velocity with initial state as [50m, 1m/s, 50, 1m/s]

 Benchmarks: 1) Proposed kernel used in GP with Cholesky factorisation; 2) Proposed kernel used in GP with HOLDR factorisation

[1] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, "Bayesian optimization for dynamic problems," arXiv preprint arXiv:1803.03432, 2018.

IV. Numerical Results: Running Time

γ	Factorisation method	GP update (sec)	AF maximisation (sec)	
			1st UAV	2nd UAV
$\gamma = 1$	HODLR	0.86	0.61	0.62
	Cholesky	0.97	0.77	0.77
$\gamma = 2$	HODLR	0.29	0.72	0.73
	Cholesky	0.49	0.84	0.85
$\gamma = 4$	HODLR	0.04	0.79	0.80
	Cholesky	0.19	0.96	0.97

Per-step running time based on:

GP with Cholesky

factorisation

• GP with HODLR factorisation

IV. Numerical Results: Error

HODLR factorisation helps to improve the efficiency of the proposed approach.

Conclusions

Efficient, factorized GP methods are developed for sensor scheduling and tracking in sensor networks

 Sensor scheduling can be integrated into sensor networks for efficient sensor management

Future plan

 Improve the efficiency of Bayesian optimisation for sensor management and tracking: 1) Path planning for UAVs; 2) Error bound-assisted searching; 3)
 Extend the proposed approach to a heterogeneous sensor network case study

- Acknowledgements to UDRC SIGNeTs Project (funded by UK Dstl and USA DoD)
- Thanks!