Random Sampling for Robust Detection of Data modulated LFM Waveforms

Authors: Kaiyu Zhang, Fraser K. Coutts, and John Thompson Institute for Digital Communications, University of Edinburgh Email: Kaiyu.Zhang@ed.ac.uk

UDRC WP2.2 Reconfigurable signal processing

SSPD 2023 conference, 13th September 2023

=PSR(

Physical Sciences id ₱▶ d ☰ ▶ d ☰ ▶ ☰ ∽) Q (~

Research topic — Joint radar and communication

- Sixth generation (6G) is the next generation mobile system for wireless communications technologies;
- Waveforms in 6G Convergence of Communications, Computing, Control, Localisation, and Sensing (3CLS);
 - Integrated Sensing and Communication (ISAC) waveform;
 - Radar for target localisation (e.g., range & velocity);
 - Communication for information transmission;
 - Useful both in defence and civilian applications.

Our Research

Research goals:

Investigate novel detection methods for modified/traditional radar waveform via signal processing;

Improve the robustness of our method in imperfect conditions.

Research contents:

Traditional linear frequency modulated (LFM)/chirp waveform:

$$f(t) = \exp(j(\pi f_l t^2 + 2\pi f_k)).$$
 (1)

Sciences ヨト モヨト ヨークへぐ

- *f_l* determines how quickly the chirp frequency changes.
- f_k determines **the start frequency** of the chirp signal.
- ► Technique: Discrete Chirp-Fourier Transform (DCFT)¹.

¹X. -g. Xia, "Discrete chirp-Fourier transform and its application to chirp rate estimation," *IEEE Transactions on Signal Processing.*, vol. 48, no. 11, pp. 3122-3133, Nov. 2000.

DCFT Detection Method

- ▶ The discrete format of signal x[n] = f(n/N) with N samples;
- ► N-point DCFT method is applied to x[n] with the twiddle factor W_N = exp(-2πj/N)

$$X[l,k] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n] W_N^{ln^2 + kn} \qquad l,k = 0, 1, \dots, N-1.$$
 (2)

- ► DCFT: chirp signal → two dimensional frequency domain;
- l represents f_l and k denotes f_k ;
- (\tilde{l}, \tilde{k}) corresponds to the **highest** value of the matrix X[l, k];
- The estimated LFM parameters \tilde{f}_l and \tilde{f}_k are

$$\tilde{f}_l = 2N\tilde{l}, \qquad \tilde{f}_k = \tilde{k}.$$
(3)

ysical Sciences ー・・・シート モー・ モー・ マへへ

Simulation Example

▶ The LFM f(t) chirp frequency $f_l = 550 \text{ Hz}$ and offset frequency $f_k = 30 \text{ Hz}$. In the DCFT detection method when N = 55.

Coherent DCFT² — Customised Ranges and Resolutions

²K. Zhang, F. K. Coutts and J. Thompson, "Detecting LFM Parameters in Joint Communications and Radar Frequency Bands," 2021 Sensor Signal Processing for Defence Conference (SSPD), Edinburgh, United Kingdom, 2021, pp. 1-5.

Joint radar and communication (JRC)

- Radar-Communication Coexistence (RCC).
 - Task: to efficiently allocate the spectrum for both radar waveforms and communication signals
 - Explore Spectrum Allocation; Opportunistic Spectrum Access; Interference Issues.
- Dual-function radar communication (DFRC) systems.
 - Task: use one waveform to perform radar and communication functions simultaneously
 - Waveform design based on communication standard such as orthogonal frequency-division multiplexing (OFDM);
 - Waveform designed based on radar waveform, e.g., LFM/chirp signal.

Data modulated LFM waveform

- Example: Quadrature Phase Shift Keying (QPSK)-LFM waveform
- ▶ Symbols Example $S_n(t)$: 00 01 10 11 00 01 10 11 00 01

Figure: QPSK example diagrams.

Sciences ト イ ヨ ト イ ヨ ト ヨ の へ (や

QPSK-LFM waveform

ng and Physical Sciences Council 4 🗂 🕨 🔺 🚍 🕨 🔺 🚍 🕨

ж

Non-Coherent DCFT method (NC-DCFT)

- Signal: Data modulated LFM waveforms.
- Problem: Random phase information from different symbols.
- Impact: Deteriorate the coherent DCFT performance.
- Principle: Coherent DCFT works within a fixed signal phase.
- Solution NC-DCFT process:
 - Divide received signal for each symbol;
 - Apply coherent DCFT in each segment;
 - Implement norm function to counter uncertain PSK information;
 - Summation for the final result.

Sciences ト イ ヨ ト イ ヨ ト ヨ の へ (や

Non-Coherent DCFT Diagram

Coherent DCFT Process

Norm and Summation

ngineering and Physical Sciences testartBillColuncil 4 🗇 🕨 4 🚊 🕨 4 🚊 🕨 💈 🔗 🔍 (~

EPSRO

Figure: Example of non-coherent DCFT process when symbol length is **known** to be 10 symbols per chirp signal.

Key Simulation Parameters.

Name	Value/Interpretation
the length of the DCFT K	128 or 256
f_l Estimation Range (f_l^{\min}, f_l^{\max})	$(0, 3 \times 10^5) \text{ Hz}$
f_k Estimation Range (f_k^{\min}, f_k^{\max})	$(10^9, 10^{10}) \text{ Hz}$
Chirp period T	$1 \mathrm{ms}$
Number of Symbols per chirp	$50 \; (known)$
Sample Frequency f_s	10^7 Hz
Noise Type $w(t)$	Additive White Gaussian Noise
Signal to Noise Ratio (SNR)	[-30 dB, 0 dB]
Performance Metric	Normalised Mean Square Error*

*Normalised Mean Square Error (NMSE): $J_{\text{NMSE}} = \frac{\mathbf{d}\mathbf{d}^{\text{T}}}{\mathbf{g}\mathbf{g}^{\text{T}}}$, \mathbf{g} consists of ground truth g_l or g_k in each Monte Carlo runs and for each element in \mathbf{d} is $(\tilde{f}_l - g_l)$.

nysical Sciences | 戸 ▶ ◀ ☰ ▶ ◀ ☰ ▶ ☰ ∽ � < @

Simulation results

DCFT vs Coherent DCFT for LFM

 Coherent DCFT methods outperform the DCFT method with the customised range;

> Sciences ▶ ◀ ☰ ▶ ◀ ☰ ▶ ☰ ∽ ९ ় ↔

 Higher value of K improves the performance of coherent DCFT.

FPSR

Figure: Comparison of traditional **DCFT** and **coherent DCFT** results.

dst

PSR

Introduction Previous Research Performance Modifications Simulations Conclusions

Coherent DCFT vs Non-coherent DCFT for QPSK-LFM

- Non-coherent DCFT performs well when the symbol rate increasing;
- \$\ell_1\$ norm performs
 similarly as \$\ell_2\$ norm.

iciences ▶ ◀ ౫ ▶ ◀ ౫ ▶ ౫

Figure: Comparison of **coherent** DCFT and **Non-coherent DCFT** results in different symbol rates.

Evolution of our Detection Algorithms

- Our previous research on the detection of QPSK-LFM waveform:
 - DCFT detection method proposed for LFM signal;
 - Coherent DCFT method updated on DCFT detection for higher performance³;
 - Non-coherent DCFT method modified on the coherent DCFT for data modulated LFM waveform³.
- Our current research blind estimation & improve robustness.
 - Blind task: Estimate the symbol rate for QPSK-LFM waveforms;
 - Robustness scenario: Imperfect synchronisation with time errors;
 - Solutions: **Envelope method** and **random sampling method**.

³K. Zhang, F. K. Coutts and J. Thompson, "Non-Coherent Discrete Chirp Fourier Transform for Modulated LFM Parameter Estimation," 2022 Sensor Signal Processing for Defence Conference (SSPD), London, United Kingdom, 2022, pp. 1-5.

Sciences E + 4 E + E - DQC

Comparison Table for Different DCFT Methods.

	DCFT	Coherent DCFT	Non-coherent DCFT
The length	Fixed length ${\cal N}$	Customised K	Customised K
(f_l^{\min}, f_l^{\max})	Fixed	Customised	Customised
(f_k^{\min},f_k^{\max})	Fixed	Customised	Customised
Resolutions $\Delta f_l \ \Delta f_k$	Coarse	Fine	Fine
Application	LFM	LFM	QPSK-LFM with known symbol rate

Modifications on NC-DCFT method

- Envelope method **Blind** symbol rate estimation.
- Envelope-NC-DCFT: Envelope method 1st and then NC-DCFT applied.

Figure: Performance of envelope method for the symbol rate estimation result.

Envelope method processing:

- Square the modulus of the received signal;
- Apply the Fast Fourier Transform (FFT);
- Select the largest magnitude in the FFT bin;
- Corresponds to the symbol rate.

iciences ▶ ◀ ☰ ▶ ◀ ☰ ▶ ☰ ∽ ✑

FPSR

Robustness improvement

Application scenario - Imperfect synchronisation with timing errors

Figure: Diagram of imperfect synchronisation scenario.

- ▶ Application Mismatched sync and ℓ_1 length samples **lost**.
- ϵ_p the ratio of ℓ_1 and the oversampling rate N_o .
- Negative Impact Non-coherent DCFT fails due to phase information cancellation.

ciences ▶ ◀ ᆿ ▶ ◀ ᆿ ▶ ᆯ ∽) (~

Performance of NC-DCFT under imperfect synchronisation

Figure: Performance of NC-DCFT for f_l estimation.

- Imperfect synchronisation increases the error of estimation.
- ► The **worst** performance at 50% and gradually improves until 100%.

Sciences ト イ ヨ ト イ ヨ ト ヨ の へ (や

Solutions — Random sampling method

Figure: Diagram of random sampling method via different points $\overline{m_e}$.

- **Random length** n_i for *i*th coherent DCFT.
- Avoid phase cancellation through variable block sizes.
- The ground truth symbol rate is **unknown**.
- RS-NC-DCFT: Random sampling method is combined with the NC-DCFT.

э

Simulations — Random sampling range

Number of symbols per chirp pulse

Figure: Different simulation ranges R_i for the symbol rate.

- R1 and R3 are larger than ground truth symbol rate.
- ▶ R2 and R4 **straddle** the ground truth symbol rate.
- R5 are less than ground truth symbol rate.

12th conference of the Sensor Signal Processing for Defence (SSPD)

Introduction Previous Research Performance Modifications Simulations Conclusions

Simulations on Random Sampling Perfect Time Synchronisation

Figure: Performance comparison of chirp rate estimation in different conditions.

- R1 and R3 (larger than ground truth) performs similarly as the ground truth;
- Random sampling method is the viable option when ground truth is unknown.

Sciences 🗉 🕨 🔺 🗏 🕨 📑

FPSR

dst

PSR

Introduction Previous Research Performance Modifications Simulations Conclusions

Imperfect synchronisation

- R1 and R3 (larger than ground truth) performs better than the ground truth;
- Random sampling method is a practical method to handle imperfect synchronisation.

э

Figure: Performance comparison of chirp rate estimation when $\epsilon_p = 50\%$.

Conclusions

- Detection method is proposed for joint radar and communication.
- The NC-DCFT method works when both the symbol rate is known and time synchronisation is performing well.
- When the envelope method is applied, the Envelope-NC-DCFT performs well in situations with high SNRs.
- With the random sampling technique, the RS-NC-DCFT is an alternative strategy for the NC-DCFT when the symbol rate is unknown.
- The RS-NC-DCFT demonstrates superior performance over the NC-DCFT to combat time synchronisation problems.

Sciences ト イ ヨ ト イ ヨ ト ヨ の へ (や

Working conditions for different DCFT relevant methods.

	Unknown Symbol rate	Imperfect Syn- chronisation	Waveform Type
DCFT	X	X	LFM
Coherent DCFT	X	X	LFM
Non-Coherent DCFT	X	X	QPSK-LFM
Envelope-NC- DCFT	~	X	QPSK-LFM
RS-NC-DCFT	v	v	QPSK-LFM

