Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

Adaptive Kernel Kalman Filter for Magnetic Anomaly **Detection-based Metallic Target** Tracking Mengwei Sun **Richard Hodgskin-Brown Mike E. Davies** Ian K. Proudler James R. Hopgood 00

Novelties

Explore a new application for the Adaptive kernel Kalman filter (AKKF).

- Joint tracking and magnetic parameters estimation.
- High-dimensional and high nonlinear problems.

□ The simulations evaluate the performance of the AKKF in tracking and estimating magnetic parameters.

Outline

Background – Magnetic anomaly detection System model AKKF-based tracking and estimation algorithm Simulation Results Conclusions

Background – Magnetic anomaly detection (MAD)

MAD

Detect and locate objects by sensing disturbances in the Earth's magnetic field caused by ferromagnetic materials.

Background – Magnetic anomaly detection (MAD)

Archaeology

Access control

Tracking of moving metallic vehicle

Background – Magnetic anomaly detection (MAD)

Advantages

Passive Operation

Stealthy Detection

Secret Agent Mode

Long Detection Range

Background – MAD-based metallic target tracking

➢ The magnetic signature → Unique identifier → Individual target tracking and differentiation.

> The tracking process:

Measuring the magnetic field

Analysing changes in the magnetic signatures

Determine:

- Location
- Speed
- Direction of the metallic targets

System Model

Motion model: nearly constant velocity model
The magnetic moment of the metallic objects

$$\mathbf{m}_n = \mathbf{m}_n^{\text{hard}} + \mathbf{m}_n^{\text{soft}} = \Theta(\theta_n)\mathbf{m}_0 + \frac{D}{\mu_0}\mathbf{B}_0,$$

- Ferromagnetic content (hard iron)
- Deflection of the Earth's magnetic field (soft iron)
- Scalar constant D
- Permeability of the vacuum μ_0
- Earth's magnetic field **B**₀

System Model

$$\mathbf{y}_{n,k} = h_k(\mathbf{x}_n, \mathbf{m}_n) + \mathbf{e}_{n,k}$$

= $\mathbf{B}_0 + \frac{\mu_0}{4\pi} \frac{3 \left(\mathbf{r}_{n,k} \cdot \mathbf{m}_n \right) \mathbf{r}_{n,k} - \| \mathbf{r}_{n,k} \|^2 \mathbf{m}_n}{\| \mathbf{r}_{n,k} \|^5} + \mathbf{e}_{n,k}.$

Bayesian methods

Purpose

Track the target's movement and simultaneously estimate its magnetic moment based on measurements at two magnetometers.

Hidden states

Position and velocity (\mathbf{x}_n) , magnetic dipole moment (\mathbf{m}_0) , scalar constant (D)

Bayesian methods

Posterior pdf

 $p(\mathbf{X}_{n} | \mathbf{y}_{1:n,1:2}) = p(\mathbf{x}_{n}, \mathbf{m}_{n}, \mathbf{m}_{0}, D | \mathbf{y}_{1:n,1:2}) = p(\mathbf{y}_{n,1:2} | \mathbf{x}_{n}, \mathbf{m}_{n}, \mathbf{m}_{0}, D)$ $\times \frac{\iiint p(\mathbf{x}_{n} | \mathbf{x}_{n-1}) p(\mathbf{m}_{n} | \mathbf{x}_{n}, \mathbf{m}_{n-1}, \mathbf{m}_{0}, D) p(\mathbf{m}_{0}, D) p(\mathbf{x}_{n-1}, \mathbf{m}_{n-1}, \mathbf{m}_{0}, D | \mathbf{y}_{1:n-1,1:2}) d\mathbf{x}_{n-1} d\mathbf{m}_{n-1} d\mathbf{m}_{0} dD}{p(\mathbf{y}_{n,1:2} | \mathbf{y}_{1:n-1,1:2})}$

Bayesian methods – particle filter (PF)

$$p(\mathbf{X}_n \mid \mathbf{y}_{1:n,1:2}) \approx \frac{1}{M} \sum_{i=1}^M w_n^{\{i\}} \,\delta(\mathbf{x}_n - \mathbf{x}_n^{\{i\}}, \mathbf{m}_n - \mathbf{m}_n^{\{i\}}, \mathbf{m}_0 - \mathbf{m}_{0,n}^{\{i\}}, D - D_n^{\{i\}}).$$

Computational cost

The computational cost of the PF grows exponentially with the number of state variables

Particle degeneracy

Difficult to obtain a sufficient number of particles to represent the posterior pdf accurately

Tracking/estimation performance

Poor estimation accuracy and instability in the estimates

Bayesian methods – Adaptive kernel Kalman filter (AKKF)

Applications so far

- Single target tracking
- Sensor fusion
- Multi-target tracking

Potential applications

 Joint tracking and parameters estimation

Objectives

- Validity of the AKKF for fixed parameter estimation
- Validity of the AKKF for high-dimensional tracking/estimation problems

Bayesian methods – Adaptive kernel Kalman filter (AKKF)

- Executed in both the data state space and
 - kernel feature space
 - Based on the system model, the particles are propagated and updated in the data space.
 - KMEs of predictive/posterior pdfs are predicted and updated in the kernel feature space.

Embed the joint pdf into high-dimensional kernel space as an empirical Kernel mean embedding.

Simulation

- The AKKF uses M^{AKKF} = 100 particles, while M^{PF} = 2000 particles are used for the PF.
- The AKKF with a smaller number of particles achieved favourable tracking and estimation performance compared to the PF with a large number of particles.

Simulation

- Compared to the PF with the same number of particles, the AKKF shows improved performance.
- Compared to the benchmark performance: the AKKF shows satisfactory tracking and estimation performance with significantly reduced computational complexity.

Conclusion

Thank You For Your Attention

Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

