Sensor Signal Processing for Defence Conference

12th and 13th September 2023

Royal College of Physicians Conference Centre

Consensus-based Distributed Variational Multi-object Tracker in Multi-Sensor Network

Qing Li Runze Gan, Simon Godsill Cambridge University

Outline

Introduction

• Scalable variational tracker: single sensor case

Distributed fusion and tracking in multi-sensor network

- Centralized Variational Tracker
- Consensus-based distributed variational multi-object tracker
- □ Summary and future directions

Non-homogeneous Poisson process (NHPP) measurement model

Example: measurements of 2 targets and clutter process, generated by the NHPP model:

At time step n: target state		X_n
	measurements	Z_n
	target number	К

Measurements from each object (i=1,...K) and clutter (i=0) follow a NHPP with intensity $\lambda_i(Z_n|X_{n,i})$

Total measurements follow an NHPP with intensity $\lambda(Z_n|X_n) = \sum_{i=0}^{K} \lambda_i(Z_n|X_{n,i})$

[1] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, "Poisson models for extended target and group tracking," in Signal and Data Processing of Small Targets 2005, vol. 5913

Variational multi-object tracker: single sensor case

coordinate ascent variational filtering [2]:

target posterior distribution: $\hat{p}_n(X_n, \theta_n | Y_n)$

mean-field factorisation $q_n(X_n, \theta_n) = q_n(X_n)q_n(\theta_n)$

minimise the KL divergence $\operatorname{KL}(q_n(X_n)q_n(\theta_n)||\hat{p}_n(X_n,\theta_n|Y_n))$

Implementation:

Iteratively update until – convergence 2)

1) update for
$$q_n(X_n)$$

for $k = 1, 2, ..., K$ $q_n(X_{n,k}) = \mathcal{N}(X_{n,k}; \mu_{n|n}^k, \Sigma_{n|n}^k)$, Kalman filter
2) update for $q_n(\theta_n)$
for $j = 1, ..., M_n$ $q_n(\theta_{n,j}) \propto \frac{\overline{\Lambda_0}}{V} \delta[\theta_{n,j} = 0] + \sum_{k=1}^{K} \overline{\Lambda_k} l_k \delta[\theta_{n,j} = k]$, categorical distribution

Scalable! All can be updated independently

Why we choose variational tracker

TABLE I: Tracking performance comparisons

Fast and accurate!

		RMSE (mean $\pm 1\sigma$) track loss percentage (%) CPU time (s)					
dataset	K	PF-NHPP	Gibbs-AbNHPP	ET-JPDA	VB-AbNHPP ⁽¹⁾	VB-AbNHPP	
1	2	7.69±0.64 0.00 4.05	5.50±0.34 0.00 0.22	7.49±1.06 4.50 5e-4	5.64±0.58 0.00 3e-6	5.51±0.43 0.00 6e-6	
2	4	N/A 51.8 15.9	5.63±0.13 0.00 0.57	8.40±2.97 8.75 2e-3	5.91±0.37 0.25 6e-6	5.75±0.29 0.00 1e-5	
3	10	<u> </u>	6.06 ± 0.25 0.10 0.67	9.41±1.99 16.3 0.01	6.50±0.50 2.20 8e-6	6.03±0.32 0.70 2e-5	
4	20	_	6.25±0.26 0.65 <mark>2.31</mark>	N/A 22.6 0.03	7.31 ± 0.70 4.05 $1e-5$	6.30±0.40 1.90 3e-5	

Distributed tracking in multi-sensor network

Problem settings: • A network of sensors tracking a large number of targets in clutter

• Decentralized processing:

- 1) No central processing unit
- 2) local communication with neighbours (constraints of bandwidth)
- Time-varying sensor network (communication link failure)

Defence Impacts: e.g., border surveillance, and maritime operations

- Fast and precise tracking
- Resilient for adversarial disruptions and communication constraints

fuse local posteriors using arithmetic average

Measurement and association model for a sensor network

Consider a sensor network with N_s sensors

For each sensor s $(s=1,2,...,N_s)$: • local measurements Y_n^s :

independent NHPP model with Poisson rate Λ^s

Likelihood function: •

$$p(Y_n^s | \theta_n^s, X_n) = \prod_{j=1}^{M_n^s} \ell^s(Y_{n,j}^s | X_{n,\theta_{n,j}^s}),$$

Association prior

$$p(\theta_{n,j}^s) = \frac{\sum_{k=0}^K \Lambda_k^s \delta[\theta_{n,j}^s = k]}{\Lambda_{sum}^s}$$

Categorical distribution

For all N_s sensors at the central unit:

- joint likelihood $p(Y_n|\theta_n, X_n) = \prod_{n=1}^{N_s} p(Y_n^s|\theta_n^s, X_n).$
- joint association prior $p(\theta_n|M_n) = \prod p(\theta_n^s|M_n^s)$,

Centralized variational multi-object tracker

Coordinate ascent update:
$$q_n(X_n, \theta_n) = q_n(X_n)q_n(\theta_n)$$

Iteratively update until convergence

1. Update for
$$q_n(X_n)$$

 $q_n(X_n) \propto \hat{p}_n(X_n) \prod_{k=1}^K \mathcal{N}(\overline{Y}_n^k) HX_{n,k}, \overline{R}_n^k)$ Kalman filter
 $\overline{Y}_n^k = \overline{R}_n^k \sum_{s=1}^{N_s} \Omega_{k,2}^s, \quad \Omega_{k,2}^s = R_k^{s-1} \sum_{j=1}^{M_n} q_n(\theta_{n,j}^s = k)Y_{n,j}^s.$
 $\overline{R}_n^k = \left(\sum_{s=1}^{N_s} \Omega_{k,1}^s\right)^{-1} \quad \Omega_{k,1}^s = R_k^{s-1} \sum_{j=1}^{M_n} q_n(\theta_{n,j}^s = k),$

Independently update for each target k

- prediction $\hat{p}_n(X_{n,k}) = \mathcal{N}(X_{n,k}; \mu_{n|n-1}^{k*}, \Sigma_{n|n-1}^{k*}).$
- Kalman filter update $q_n(X_{n,k}) = \mathcal{N}(X_{n,k}; \mu_{n|n}^k, \Sigma_{n|n}^k)$
- 2. Update for $q_n(\theta_n)$

$$q_n(\bar{\theta}_n) = \prod_{s=1}^{N_s} q_n(\theta_n^s),$$

Independently update for each sensor s, each association j

$$q_n(\theta_{n,j}^s) \propto \frac{\Lambda_0^s}{V^s} \delta[\theta_{n,j}^s = 0] + \sum_{k=1}^K \Lambda_k^s l_k^s \delta[\theta_{n,j}^s = k]_{:} \text{ Categorical distribution}$$

How to decentralise it?

Coordinate ascent update: $q_n(X_n, \theta_n) = q_n(X_n)q_n(\theta_n)$

Iteratively update until convergence

Update for $q_n(X_n) = q_n(X_n) \propto \hat{p}_n(X_n) \prod_{n \in \mathcal{N}} \mathcal{N}(\overline{Y}_n^k; HX_{n,k}, \overline{R}_n^k)$ 1.

Compute at each sensor

Consensus:

$$\frac{1}{N_s} \sum_{s=1}^{N_s} \Omega_{k,1}^s$$
$$\frac{1}{N_s} \sum_{s=1}^{N_s} \Omega_{k,2}^s.$$

Independently update for each target k

- Kalman filter update $q_n(X_{n,k}) = \mathcal{N}(X_{n,k}; \mu_{n|n}^k, \Sigma_{n|n}^k)$ •
- Update for $q_n(\theta_n)$ 2.

Independently update for each sensor s, each association j

$$q_n(\theta_{n,j}^s) \propto \frac{\Lambda_0^s}{V^s} \delta[\theta_{n,j}^s = 0] + \sum_{k=1}^K \Lambda_k^s l_k^s \delta[\theta_{n,j}^s = k],$$

A demo of average consensus algorithm

- Initial iteration: Every node starts with an initial value $\Omega_{k,1}^{s}$.
- For each iteration: each node communicates with its neighbors to collect their values, and update value : $\hat{\Omega}_{i}^{(s,m+1)} = W^{(m)}\hat{\Omega}_{i}^{(s,m)} + \sum W^{(m)}\hat{\Omega}_{i}^{(j,m)}$

$$\hat{\Omega}_{k,1}^{(s,m+1)} = W_{ss}^{(m)}\hat{\Omega}_{k,1}^{(s,m)} + \sum_{j \in \mathcal{N}_s(m)} W_{sj}^{(m)}\hat{\Omega}_{k,1}^{(j,m)}$$

• Output: When converge, each node should have same value $\frac{1}{N_s}\sum_{s=1}^{N_s}\Omega_{k,1}^s$

Initial value: range from 1-50 Output: average value 31.66

Works in time-varying sensor network!

- Each sensor node has $\Omega_{k,1}^{s}$ locally •
- When converge, each sensor has the same value $\frac{1}{N_s} \sum_{s=1}^{N_s} \Omega_{k,1}^s$ ۲

Consensus-based distributed variational multi-object tracker

Objective: with only local communications,

each sensor has the same estimate as the centralized sensor fusion that have all data

Implementation: At each sensor $s = 1, 2, ..., N_s$

1. Update for $q_n(X_n)$

Step 1. compute $\Omega_{k,1}^{s}$, $\Omega_{k,2}^{s}$ locally

Step 2. perform average consensus to get

$$\hat{\Omega}_{k,1} = \frac{1}{N_s} \sum_{s=1}^{N_s} \Omega_{k,1}^s$$
$$\hat{\Omega}_{k,2} = \frac{1}{N_s} \sum_{s=1}^{N_s} \Omega_{k,2}^s.$$

Step 3. for each target k **Kalman filter update** $q_n(X_{n,k}) = \mathcal{N}(X_{n,k}; \mu_{n|n}^k, \Sigma_{n|n}^k)$ using $\overline{Y}_n^k = \overline{R}_n^k(N_s\hat{\Omega}_{k,2})$ $\overline{R}_n^k = (N_s\hat{\Omega}_{k,1})^{-1}$

2. Update for $q_n(\theta_n)$

for each association j
$$q_n(\theta_{n,j}^s) \propto \frac{\Lambda_0^s}{V^s} \delta[\theta_{n,j}^s = 0] + \sum_{k=1}^K \Lambda_k^s l_k^s \delta[\theta_{n,j}^s = k]$$

Results

Settings:

Number of sensors: 20 Number of targets: 50 Target rate:1 Clutter rate: 500

Measurements from all sensors (grey dots) Ground truth tracks (black lines) Target initial positions (green circles)

Results-an example from one single run

Optimal distributed fusion

Suboptimal arithmetic average distributed fusion

Ground truth tracks: black lines Estimate position: dotted colored line 95% confidence ellipse: shaded circles

Results

Mean OSPA of different fusion methods (average consensus iteration is 20)

Mean OSPA of the optimal distributed fusion over different iterations

Summary and extensions

Summary: A consensus-based distributed variational tracker

- **1.** Scalable to target and measurement number
- 2. Achieve optimal fusion with distributed implementation
- 3. Reliable solution: work in time-varying communication links

Extensions

- 1. A more flexible scheme that allows each sensor operate independently without waiting for consensus;
- 2. Solutions for a more general heterogeneous sensor network
 - sensor network with different coverage
 - measurement function can be nonlinear (range, bearing)
- 3. More robust and versatile tracking
 - Variational tracker with missed objects relocation for heavy clutter cases [3]

