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Outline

❑ Introduction

• Scalable variational tracker: single sensor case

❑ Distributed fusion and tracking in multi-sensor network

• Centralized Variational Tracker 

• Consensus-based distributed variational multi-object tracker

❑ Summary and future directions
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Non-homogeneous Poisson process (NHPP) 
measurement model

[1] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson models for extended target and group 
tracking,” in Signal and Data Processing of Small Targets 2005, vol. 5913

At time step n:      target state

measurements

Example: measurements of 2 targets and clutter 
process, generated by the NHPP model:

Measurements from each object (i=1,…K) and clutter (i=0) follow a NHPP with intensity

Total measurements follow an NHPP with intensity  

target number              K       

Likelihood function: 
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Association prior categorical distribution

Data Association From clutter

From target i



Variational multi-object tracker: single sensor case

[2] Gan, R., Li, Q., & Godsill, S. (2022, July). A variational Bayes association-based multi-object tracker under the non-homogeneous Poisson 
measurement process. In 2022 25th International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE. 5

mean-field factorisation

coordinate ascent variational filtering [2]:

target posterior distribution:

minimise the KL divergence

Implementation: 

1)

2) 

Iteratively 
update until 
convergence  

Kalman filter

categorical distribution

Scalable! All can be updated independently



Why we choose variational tracker
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Tracking 20 targets with heavy clutter: 
Target rate: 10
Clutter density: 10−4

Fast and accurate!



Distributed tracking in multi-sensor network
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Problem settings:

Proposed methods:

Variational trackers in 
multi-sensor network

Centralised fusion

Optimal distributed fusion 
based on consensus algorithm

Comparison: suboptimal distributed fusion

fuse local posteriors using arithmetic average

Aim to achieve an 
equivalent result 

• A network of sensors tracking a large number of targets in clutter

• Decentralized processing: 

1) No central processing unit
2) local communication with neighbours (constraints of bandwidth)

• Time-varying sensor network (communication link failure)

• Fast and precise tracking 
• Resilient for adversarial disruptions and communication constraints

Defence Impacts:   e.g., border surveillance, and maritime operations



Measurement and association model 
for a sensor network
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Consider a sensor network with 𝑁𝑠 sensors

For each sensor 𝒔 (s=1,2,…, 𝑁𝑠) :

• Association prior

• Likelihood function: 

independent NHPP model  with Poisson rate Λs

Categorical distribution

• local measurements 𝒀𝒏
𝒔  :

• joint association prior

For all 𝑁𝑠 sensors at the central unit: 

• joint likelihood
central unit 

Local sensor



Centralized variational multi-object tracker

Coordinate ascent update:

1. Update for 𝑞𝑛 𝑋𝑛

Kalman filter 

2. Update for 𝑞𝑛 𝜃𝑛

• Kalman filter update

• prediction

Independently update for each target k

Independently update for each sensor 𝑠, each association j

Categorical distribution

Iteratively update until convergence 

central unit 

Local sensor
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How to decentralise it ?

Coordinate ascent update:

1. Update for 𝑞𝑛 𝑋𝑛

2. Update for 𝑞𝑛 𝜃𝑛

• Kalman filter update

Independently update for each target k

Independently update for each sensor 𝑠, each association j

Iteratively update until convergence 

Consensus:
When converge, 
each sensor has:

Compute at each sensor
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A demo of average consensus algorithm
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• Initial iteration: Every node starts with an initial value Ω𝑘,1
s .

• For each iteration:
      each node communicates with its neighbors to collect their values, and update value :

Number of sensors: 20

• Output: When converge, each node should have same value 

Initial value: range from 1-50
Output: average value 31.66



Works in time-varying sensor network!

12

Number of sensors: 20

• Each sensor node has Ω𝑘,1
s locally

• When converge, each sensor has the same value 



Consensus-based distributed 
variational multi-object tracker

13

Objective: with only local communications,
 each sensor has the same estimate as the centralized sensor fusion that have all data 

Implementation: 

1. Update for 𝑞𝑛 𝑋𝑛

2. Update for 𝑞𝑛 𝜃𝑛

Step 3. for each target k 

for each association j

Step 1. compute Ω𝑘,1
s , Ω𝑘,2

𝑠 locally

At each sensor 𝑠 = 1,2, … , 𝑁𝑠

Step 2.  perform average consensus to get 

Kalman filter update
using



Results
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Settings:
Number of sensors: 20
Number of targets: 50
Target rate:1 
Clutter rate: 500

Measurements from all sensors (grey dots)
Ground truth tracks (black lines)
Target initial positions (green circles)



Results-an example from one single run

Optimal distributed fusion Suboptimal arithmetic average 
distributed  fusion

Ospa:2.88 Ospa:11.42

Ground truth tracks: black lines
Estimate position: dotted colored line
95% confidence ellipse: shaded circles
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Results

Mean OSPA of different fusion methods (average consensus iteration is 20)

Mean OSPA of the optimal distributed fusion over different iterations
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Summary and extensions

1. Scalable to target and measurement number

2. Achieve optimal fusion with distributed implementation

3. Reliable solution: work in time-varying communication links

[3] Gan, R., Li, Q. and Godsill, S., “Variational Bayes Tracker with Non-homogeneous Poisson Measurement Process”, IEEE 
Transactions on Aerospace and Electronic Systems, 2023, submitted. 17

Extensions 

Summary: A consensus-based distributed variational tracker

1. A more flexible scheme that allows each sensor operate 
independently without waiting for consensus;

2. Solutions for a more general heterogeneous sensor 
network

• sensor network with different coverage
• measurement function can be nonlinear (range, 

bearing) 
3. More robust and versatile tracking

• Variational tracker with missed objects relocation for 
heavy clutter cases [3]
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