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Talk Outline 

▪ Generative Adversarial Networks (GAN) for Limited 

EM Signals 

▪ Federated Learning (FL) with Resource Constraints

▪ Use Transfer Learning to Adapt to New Operating 

Environments
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GAN-Based Detection of Adversarial EM Signal Waveforms

▪ Conventional techniques

– RF fingerprinting: channel-fingerprint, device-fingerprint 

– Transient-based, steady state-based 

▪ Challenge: unauthorized transmissions often originate 

from unidentified devices with unknown EM fingerprints.

– No samples - they appear for the first time

– Samples of insignificant size to be efficiently modelled 

Identification through traditional supervised learning or 

signal processing techniques is extremely difficult  

A. Gkelias and K. K. Leung, "GAN-Based Detection of Adversarial EM Signal Waveforms," MILCOM 2022
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Anomaly Detection

Use only available data to learn how to detect irregularities or 

unobserved patterns/features in new sets of data 

▪ Technique known as “anomaly” or “novelty” detection

– “normal”: already known waveforms 

– “anomaly”: previous unseen waveform, with features different to the 

former ones

▪ First, train the system on “normal” – consider as friendly 

waveforms

▪ Then, identify unknown waveforms as “anomalies” –

potentially adversarial
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Generative Adversarial Networks (GANs)

▪ GANs only exploits the discriminative benefit of the 

network

– i.e., minimize distance between real and generated sample distributions

▪ Susceptible to training instabilities and mode collapse – 

difficult to train
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Dual AE enhanced GAN Architecture
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Dual AE enhanced GAN Architecture

Autoencoder 

Discriminator/Critic 

Adversarial Loss:
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Dual AE enhanced GAN Architecture

Encoder Features Loss:
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Dual AE enhanced GAN Architecture

Reconstruction Loss :
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Anomaly Score 

▪ During training, minimize:

▪ Anomaly Score

▪ Anomaly Score as probability
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Wasserstein GAN-GP 

▪ Training instabilities (Discriminator is optimised faster 
than the Generator and mode collapse)

▪ Use Wasserstein GAN-GP  to overcome these issues:
– Wasserstein-1 distance as discriminator’s objective function

– Output is now a scalar score rather than a probability 

– “gradient-penalty” for weight regularization to enforce 1-
Lipschitz continuity 
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Experimental Set-up and EM Dataset

▪Synthetic (MATLAB simulated) dataset
– Radar: Rectangular, LFM, Barker Code

– Communications: BPSK, QPSK, PAM4, GFSK, CPFSK

– Channel-impairments: AWGN, Rician multipath 
fading, Doppler shift

▪3 different evaluation scenarios
– Only Radar waveforms

– Radar and Communications waveforms

– Only LFM Radar waveforms 
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Performance Results
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Challenge for Federated Learning (FL)

Often need to train machine learning (ML) models using data collected at 

different locations

Not to share data from multiple locations for data privacy or lack of 

communication bandwidth

Federated Learning (FL) is a possible solution

Edge computing or other systems often have limited resources (e.g., 

bandwidth, processing power, response time)

We propose an approach to optimizing FL subject to resource

constraints 14



Federated Learning: Distributed Gradient Descent 

Communication
network

Aggregator

Node
Node

Data
Data

Model

parameters

Question: How many local updates between two global aggregations 

subject to available resources?

▪ Distributed and centralized gradient descent are NOT equivalent: 

Divergence of local gradient by local updates depends on data 

distribution at nodes

▪ Infrequent aggregation saves communication cost, but affects learning

Minimize learning error by finding the optimal number of local 
updates between two global aggregations given available resources 15



Approximate Solution for Optimal Training

Derive and use upper bound as an approximation to the loss function

▪ 𝐺 𝜏 has a unique maximum (strictly concave)

▪ 𝜏∗ is found using binary search

where

𝑎 = 𝑏/𝑐

Original problem: Approximation:

𝜏: number of local 
updates between 
two aggregations

S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive Federated 

Learning in Resource Constrained Edge Computing Systems,” IEEE JSAC, 2019
16



Experiment Results: Loss Functions

Proposed approach (symbols 

in the left plots) performs 

close to the optimum for 

all cases and models

Optimal value of is different 

for different cases and 

models

In some cases, distributed 

approach can perform 

better than centralized 

approach for fixed 

available resources
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DGD: Deterministic gradient descent
SGD: Stochastic gradient descent 17



Model Pruning for Federated Learning (FL)

Key ideas of model pruning

▪ Removing unimportant parameters does not degrade performance

▪ Fewer model parameters reduce computation and communication

Adaptive selection of a subset of model parameters

▪ Among all subsets, select the subset of parameters to maxmize the 

ratio of decrease in loss function by pruned parameters to time 

needed to process the parameter subset

▪ Optimal greedy algorithm for identifying pruned parameters

▪ Established convergence bound on the loss function by the pruned 

parameters

Model pruning
Input

Hidden

Output Input

Hidden

Output
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Training Acceleration for Pruned FL

Conv-2 on 

FEMNIST

Observation: PruneFL accelerates training on various datasets

Y. Jiang, S. Wang, et. al., “Model Pruning Enables Efficient Federated Learning on Edge Devices,” 

IEEE Trans. on Neural Networks and Learning Systems, early access, April 2022.
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Change of EM Environments

▪ ML Challenge: Change of EM Environments

- Learned model is no longer valid in new environments

- Learn from beginning in a new environment?

- Can we re-use knowledge learned from one environment to a 

new one?

▪ Possible Technique to Adapt Learning in New Environments

- Transfer learning (TL)

Urban environment Suburban environment
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RL + Transfer Learning for Environment Changes

▪ Issue: How can RL adapt to changes of operating environment?

▪ Joint Reinforcement and Transfer Learning (RL+TL)
- Consider SDN fragmentation with 2 domains, focusing on data servers

- Combine RL (e.g., sasRL) and TL based on generative adversary network 

(GAN) to synthesize data for learning in new environments

- Combined RL+TL can significantly speed up RL when operating 

environment changes (e.g., SDN domain fragmentation and re-connection)

Results:

- The reward is inversely 

proportional to the service delay

- Real Explorations = 10,000 data 

samples

- Augmented (RL+TL) or Limited 

Explorations = 100 data samples

(1% of Real Exploration sample 

size)
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Summary on ML for Signal Processing & Communications

▪ Generative Adversarial Networks (GAN) for Limited EM Signals

- Develop the GAN framework to generate training data for classifying EM 

signals (e.g., hostile signals)

- Validated the proposed framework by simulated EM environments

▪ Federated Learning (FL) with Resource Constraints 

- Formulated and derived upper bound for the loss function to estimate 

optimal FL parameters using limited resources

- Developed a technique to prune FL models

- Validated new approaches by various datasets

▪ Transfer Learning (TL) to Adapt to New Operating Environments

- Use reinforcement learning to illustrate transfer learning can speed up 

training following changes of operating environment

- Experimentation indicates very significant speed up from TL
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