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Inertial Sensors

Gyroscopes Accelerometers

https://www.canalgeomatics.com/product/kvh-dsp-3000-fiber-optic-gyro/
https://www.tekedia.com/what-is-an-accelerometer-what-is-a-gyroscope/



Inertial Navigation Systems

Strapdown Inertial Navigation System

https://www.unmannedsystemstechnology.com/expo/inertial-navigation-systems/



Inertial Sensing
• Accelerometers measure ‘specific force’ along a specific axis, 

𝑓 = 𝑎 − 𝑔

– Accelerometers rely on measuring the deflection of a ‘proof mass’, either 
the physical motion or some quantity derived from a deflection, such as a 
vibrational frequency

• Gyroscopes measure angle rate around a specific axis, 

𝜔 =
𝑑𝜃
𝑑𝑡

– Gyroscopes can either be optical (using the Sagnac effect) or mechanical 
(generally using opposing accelerometers)



Dead Reckoning with an INS



A Simple Approach to Inertial Navigation
• To calculate the velocity and position, first remove gravity from the 

measurements

– And integrate

– And integrate again

– But you need to know where you are, and where you are heading…

• That’s without knowing which way is up, which way is North, and the 
gravity value at every point along your route

𝑎(𝑡) = &𝑓(𝑡) + 𝑔

𝑣(𝑡) = 𝑣(0) + ,( &𝑓(𝑡) + 𝑔 )𝑑𝑡

𝑟 = 𝑟(0) + ,𝑣(𝑡) 𝑑𝑡



Biases and other errors
• Sensors have errors

– Measurement noise, bias errors, alignment errors…

• Inertial sensors measure a derivative or the second derivative of the 
quantities that we want – position, velocity, orientation

– Integrating does not correct to remove initial errors or any integrated errors
– Integrating acceleration does not give velocity, it is the change in velocity

• Typically, we have to contend with:
– Measurement errors: accumulate ∝ 𝑡𝑖𝑚𝑒
– Bias errors: accumulate ∝ 𝑡𝑖𝑚𝑒
– Alignment errors: cause cross-coupling between errors
– Scaling errors: accumulate, proportional to the signal
– Time-dependent errors: bias drifts
– Mechanical errors: caused by flexure of structure with rapid changes



Strapdown INS



Strapdown Inertial Navigation System
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Error Growth in Inertial Navigation Systems
• Example commercial MEMS INS using data from a static test 

Log-Log plot of Velocity errors for static data test (x axis – red, y axis – green, z axis – blue).
The black dashed lines are present to indicate functions that scale as square root of time, linear 
in time, and the square of time.
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Accumulation of Errors

*Courtesy of Paul Groves (UCL)
See: P. D. Groves, “Principles of GNSS, Inertial, and Multisensor Integrated 
Navigation Systems” (Artech House, 2013).
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Augmentation
• Augmentation – Improving Inertial Measurement Models

– Dynamical models
– Improved gravity models
– Transfer alignment
– Calibration
– Magnetic sensors

• In practice, any INS needs a position fixing system to correct for the 
errors that accumulate over time.

– GNSS/GPS (inc. signal information/phase)
Loosely coupled, tightly coupled, ultra-tightly coupled, ‘deep’ coupled…

– TRN/SMAC
– Map-matching
– Star trackers
– Radio Navigation (eLORAN, VOR/DME/NDB, Opportunistic)



Error Propagation vs Bandwidth
• Dead Reckoning

– Direct integration of inertial sensor outputs can provide high bandwidth 
measurements and rapid updates for location, velocity and attitude

– Outputs from high bandwidth sensors can be integrated into control 
systems

– Autonomous operation
– Integration of velocity, acceleration and angle rates do not give direct  

measurements for position and attitude, just changes – errors accumulate 
leading to instabilities and unconstrained drift

• Position Fixing
– Provide direct measurements for position which limits any accumulation of 

errors or drift
– Non-autonomous, requires external reference or database
– Low bandwidth updates due to strong correlations in databases and 

references over short periods of time
– Overheads associated with maintenance of databases or reference signals
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Augmentation
• Augmentation – Improving Inertial Measurements

– Dynamical models
– Transfer Alignment
– Calibration
– Magnetic Sensors

• In practice, any INS needs a position fixing system to correct for the 
errors that accumulate over time

– GNSS/GPS (inc. signal information/phase)
Loosely coupled, tightly coupled, ultra-tightly coupled, ‘deep’ coupled…

– TRN/SMAC
– Map-matching
– Star trackers
– Radio Navigation (eLORAN, VOR/DME/NDB, Opportunistic)



Augmentation with Quantum Sensors
• Augmentation – Improving Inertial Measurements

– Dynamical models
– Transfer Alignment
– Calibration – As a minimum, quantum sensors can dramatically 

improve the calibration of existing inertial sensors*
– Magnetic Sensors

• In practice, any INS needs a position fixing system to correct for the 
errors that accumulate over time

– GNSS/GPS (inc. signal information/phase)
Loosely coupled, tightly coupled, ultra-tightly coupled, ‘deep’ coupled…

– TRN/SMAC
– Gravity Map Matching**
– Star trackers
– Radio Navigation (eLORAN, VOR/DME/NDB, Opportunistic)

* MJ Wright, et al. "Cold atom inertial sensors for navigation applications." Frontiers in Physics 10 
(2022): 994459.
** AM Phillips, et al. "Augmented inertial navigation using cold atom sensing." Cold Atoms for 
Quantum Technologies 11578 (2020): 115780C



Cold Atom Sensors
• One of the biggest sources of systematic errors in navigation systems 

is inaccurate calibration of the sensors
– Even good calibration will inevitably lead to systematic errors

• Accelerometers rely on the ability to measure the motion of a proof 
mass when it undergoes an acceleration

– The mass of a proof mass is only known to some finite accuracy

• Atoms of one isotope are all identical, and their mass is known to an 
extremely high precision

• Atoms behave like waves, ‘matter waves’, and (when sufficiently cold)  
a cloud of atoms of the same type, can be made to form superpositions 
and generate interference patterns

– This allows very accurate phase measurements to be made which can be 
used to estimate the motional states of the atoms



Cold Atom Interferometers

Schematic diagrams showing (a) an example of the geometry of a cold atom interferometer 
and (b) the pulse sequence used to generate superpositions

Wu, Xuejian, Zachary Pagel, Bola S. Malek, Timothy H. Nguyen, Fei Zi, Daniel S. Scheirer, and 
Holger Müller. “Gravity surveys using a mobile atom interferometer.” Science advances 5, no. 9 
(2019): eaax0800.



Atom Interferometry
• Quantum Inertial Sensors

– User-defined duty cycle  ⎼ Restricted dynamic range
– Low measurement frequency  ⎼ Measurement failure rate
– Possible time-dependent sensitivity – Orientation limits



So, why is it so good?
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Cold Atoms as Sensors
• The falling cloud of cold atoms is placed in a superposition, which is 

then swapped over, and recombined – this gives an interference 
pattern

– The phase of the interference pattern is proportional to the gravity

– where          is the wavenumber of the pi/2 pulses.
• For two interferometers, sharing a common phase reference signal (the 

main Raman beam), the phase difference is 

– Technically, there is a rotation term in there as well, but this is proportional 
to the square of the rotation rate, so as long as Ω! ≪ 𝑑𝑔"/𝑑𝑧 then the 
gravity gradient will dominate the measurement
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online and it has a resolution of 1 nautical mile – the geoid
maps the local variations of gravity to allow local mean sea
level to be defined relative to the standard Earth reference el-
lipsoid, WGS8443. Higher resolution databases are available
for most of the land masses. For example, SRTM2gravity44,
which is modelled from local topographic features, currently
has a resolution of 90 metres.

The main difficulty with position fixing using gravitational
map-matching is that the variations in gravity are very small
and often difficult to measure. Measuring variations in the
acceleration due to gravity is possible with sensitive classi-
cal accelerometers, using sensitive optical measurements of
falling bodies (‘falling cube’ gravimeters)9,10. Gravitational
map-matching has already been demonstrated using such sys-
tems39,40. Cold atom quantum interferometer systems offer
significant scope for practical gravity-based map-matching
systems, and – unlike conventional classical gravimeters –
they do not require frequent calibration to retain their accu-
racy over long periods of time.

This paper proposes a method for position fixing using par-
tial measurements from a gravity gradient sensor formed from
two cold atom interferometers with a common laser reference
signal, which allows the cancellation of vibrational noise be-
tween the two measurements. The standard method for ex-
tracting gravity gradient measurements using this type of sen-
sor is to take a sequence of paired measurements from each
interferometer. The pairs of measurements lie on an ellipse –
because the phase of the reference laser is unknown and varies
over time. The gradient is found by fitting an ellipse to a set of
measurements45–47. This presents a potential problem for the
use of this method when the gradiometer is moving relative to
the reference field. If the gravity gradient varies between each
pair of interferometer measurements, each pair lies on a dif-
ferent ellipse. As a result, variations in the gravitational gra-
dient as the sensor moves introduce errors into the measured
gradients. To avoid these errors, we propose a position fixing
method that references individual pairs of interferometer mea-
surements against a gravitational database. The method uses a
set of possible locations and the gravitational database to pro-
duce a set of candidate ellipses, and uses a particle filter48–50

to select locations that minimise the difference between the
candidate ellipses and the actual measurement pairs. Over
time, as the vehicle moves – with each particle in the parti-
cle filter representing a location and an ellipse – the distri-
bution of particles will converge on the correct position. We
describe this as position fixing with partial gravity gradient
measurements, because we do not construct an ellipse over a
sequence of measurement pairs in the conventional way, the
ellipses that we construct correspond to candidate locations
and the pairs of interferometer measurements are used as in-
dependent updates to improve the estimated position. We will
however compare the results against the standard ellipse fit-
ting method, which shows a small bias in the gravity gradient
values obtained underestimating the true gravity gradients ex-
perienced.

The paper starts in section II by introducing the measure-
ment model used for the gravity gradiometer. Section III out-
lines the inertial navigation solution and the vehicle trajectory

model and section IV describes the particle filter for the posi-
tion fixing updates. Example results are presented in section V
and a discussion of the results and conclusions are given in
section VI.

II. COLD ATOM GRAVITY GRADIOMETERS

Cold atom gravity gradiometers consist of two atom inter-
ferometers separated by a known distance and sharing a com-
mon Raman laser reference signal13–17,19–21. Clouds of cold
atoms are prepared and held in a magneto-optical trap inside
a vacuum chamber. During each measurement, the clouds in
each chamber are allowed to fall under the action of gravity.
During the fall, the laser provides a sequence of pulses for
each cloud: a p/2 pulse is applied to place the atoms in a
superposition of momentum states (the interferometer ‘beam-
splitter’), the second pulse (a p pulse) reverses the momen-
tum states in the superposition (‘reflection’), and another p/2
pulse recombines the superpositions, which have acquired a
phase difference due to the different trajectory taken by each
of the superposed states. The phase difference causes interfer-
ence fringes which can be measured and related to the gravi-
tational acceleration experienced by the atoms. For this paper,
we are interested in the gradient of the vertical component of
the gravitational acceleration so we place the interferometers
one above the other, and on a stabilised platform, to measure
the vertical component of the gravitational acceleration at two
points separated by a vertical distance Dz. Other configura-
tions have been proposed for measuring other components of
the gravity gradient and differential measurements16 but these
are not considered here.

The sensor measurements are simulated using a standard
model to provide two signals, one for each of the interferom-
eters14,15,

S0(n) = h(N̄ +dNn)sin(f0 +fn)+ s0 (1)
S1(n) = h(N̄ +dNn)sin(f1 +fn +dfn)+ s1 (2)

where h is the measurement efficiency (or the contrast of the
interference fringes), N̄ is the average number of atoms in
each cloud, dNn is the atom number shot noise on each mea-
surement (at time step/measurement n, where the standard de-
viation of dNn is sN =

p
N̄), fn is the Raman laser phase,

which is unknown but common to each interferometer in a
gradiometer, dfn is the measurement phase noise which is as-
sumed to be Gaussian with a standard deviation sf (both in-
terferometer would have such phase noise, but the phase noise
in the upper ‘0’ interferometer is subsumed within the defi-
nition of fn), and s0 and s1 are both constants representing
signal biases. f0 and f1 are the phases of interest in each of
the interferometers, f0 = ke f f g(z0)T 2 and f1 = ke f f g(z1)T 2,
where ke f f is the effective wave number of the p/2 interfer-
ometer pulses, and T is the time between the p/2 and the p
pulses. For convenience, we will normalise signals by divid-
ing through by hN̄: S̃0,1(n) = S0,1(n)/hN̄.

Taking the difference of these two phases provides the value
of the gradient of the vertical component of the gravitational
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acceleration in the vertical direction dgz/dz.198

D(Df) = Df0 �Df1 (3)199

= ke f f (g(z0)�g(z1))T 2 (4)200

' ke f f Dz(dgz/dz)T 2 (5)201

However, the unknown phase in the Raman laser means that202

each pair of measurements lies on an ellipse that can be203

formed by taking repeated measurements and fitting an ellipse204

to the resultant signals, as described in reference45. Often 20205

or more measurements are required for to obtain a good fit206

to the ellipse. More sophisticated sensor models that include207

other effects – including rotations and higher order gravity208

terms – are available51–53 but the standard approach is adopted209

here for simplicity and to focus attention on the position fixing210

method.211

The standard ellipse fitting approach described in refer-
ence45 has been extended and enhanced46,47. However, again
for simplicity, we use the standard method where the phase
difference is found from fitting an ellipse of the form45,

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0

so that Df = cos�1(�B/2
p

AC). The two constants, s0 and212

s1, found in (1) affect the origin of the fitted ellipse but not the213

phase difference that we use to estimate the gravity gradient,214

so we set these to zero for convenience.215

For the sensors modelled in this paper, the relevant cold216

atom sensor parameters values are: interferometer measure-217

ment frequency fmeas = 1.0 Hz, atomic mass (Caesium 133)218

m = 2.20693925⇥ 10�25 kg, time between pulses T = 0.16219

s, atom recoil velocity vrec = 7.0⇥10�3 m/s, ke f f = mvrec/h̄,220

vertical separation of interferometers z0 � z1 = Dz = 0.5 m,221

mean number of atoms per measurement N̄ = 106, measure-222

ment efficiency h = 0.5. The specific choices for the interfer-223

ometer parameters are based on system parameters from the224

current generation of cold atom technologies, and they are not225

critical for the operation of the position fixing algorithm dis-226

cussed in this paper.227

III. INERTIAL NAVIGATION AND TRAJECTORY228

MODELLING229

To demonstrate the proposed method, we use an aviation230

example, where we simulate a cold atom sensor placed in a231

large aircraft. The aircraft is assumed to have a standard clas-232

sical inertial navigation system that provides high frequency233

motional data and a navigation solution that will drift if un-234

aided by the cold atom sensor and the position fixing provided235

by the method presented here. The aircraft flies in a straight236

line between two points at a constant altitude. The two points237

are selected to be sufficiently far apart (more than 1000 km)238

so that the navigation solution has to account for a number of239

important factors, including the variations in the local grav-240

ity field. In addition to gravitational variations, simulating a241

trajectory over a large distance and a long duration flight we242

must also include the curvature of the Earth and – travelling243

North to South – the approximately ellipsoidal shape of the244

Earth, the Coriolis effect due to the Earth’s rotation, and the245

requirement to change the local navigation frame to maintain246

a local level (the ‘transport rate’28).247

For this paper, we model a trajectory that starts in Liver-248

pool (Latitude = 53.407579 degrees, Longitude = �2.967853249

degrees) and ends in Toulouse (Latitude = 43.604652 degrees,250

Longitude = 1.444209 degrees), which corresponds to a dis-251

tance of approximately 1137 km. The aircraft flies at a con-252

stant altitude of 3000m and at a constant speed of 100 m/s,253

meaning that the total journey takes 11370 seconds or 3 hours254

and 9.5 minutes. We have chosen this route for the reasons255

outlined above and because the route passes over a body of256

water – the English Channel or la Manche. This forces us to257

use two gravity databases, a high resolution SRTM2gravity258

database which is only defined for sections of the route over259

land (with a 90m resolution44) and the EGM2008 global260

database (with a resolution of 1 nautical mile42) over the sea261

area: the simulation has been set up to use SRTM2gravity262

where it is available and default to EGM2008 where it is not263

available. The gravity gradient values are calculated using the264

numerical integration method described in reference54. Us-265

ing this route allows us to investigate the effect of different266

database resolutions on the accuracy of the resultant naviga-267

tion solution. The route and the simulated gravity gradient268

profile generated by the two databases are shown in Figure 1.269

The background gravity gradient is dgz/dz ' 3.07⇥10�6s�2,270

whilst the local variations that are used in position fixing are271

around 2�3⇥10�8s�2. The sections of the route correspond-272

ing to the higher resolution SRTM2gravity database show sig-273

nificantly larger variability with more smaller scale features.274

275276

The trajectory is defined in terms of a series of equally277

spaced waypoints linking the two locations (spaced at 1 sec-278

ond intervals along the path) and, for simplicity, we assume279

that the motion is smooth and free of large vibrations and sud-280

den jerks – although we do include small vibrations, which281

can cause atom clouds to drift outside the Raman beam and282

cause a measurement to fail. We also assume that the cold283

atom sensor is on a stabilised platform to remove the effect284

of small rotations of the platform12. We interpolate posi-285

tions between the waypoints and convert these locations to286

a local navigation frame28, which is defined in terms of lo-287

cal North-East-Down axes in this work. The definition of a288

local Cartesian reference frame (North-East-Down or NED,289

often referred to as the local Earth-oriented frame) is standard290

practice in aerospace engineering and simplifies the genera-291

tion of motional states: velocity, acceleration, and rotational292

states/angular velocities. We assume that the aircraft orienta-293

tion is fixed relative to the platform’s velocity vector so that294

the angles of attack and sideslip (the angles between the plat-295

form body axes and the velocity vector) are constant, and we296

can, without loss of generality, set these to zero.297

This approach, together with a WGS’84 ellipsoid and grav-298

ity mode, allows us to generate all of the relevant dynamic299

quantities (positions, velocities, accelerations, attitude an-300

gles, angle rates) at whatever frequency is required for the301

navigation system model. We then use the standard equa-302

tions for inertial navigation in the local frame, described in303
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online and it has a resolution of 1 nautical mile – the geoid87

maps the local variations of gravity to allow local mean sea88

level to be defined relative to the standard Earth reference el-89

lipsoid, WGS8443. Higher resolution databases are available90

for most of the land masses. For example, SRTM2gravity44,91

which is modelled from local topographic features, currently92

has a resolution of 90 metres.93

The main difficulty with position fixing using gravitational94

map-matching is that the variations in gravity are very small95

and often difficult to measure. Measuring variations in the96

acceleration due to gravity is possible with sensitive classi-97

cal accelerometers, using sensitive optical measurements of98

falling bodies (‘falling cube’ gravimeters)9,10. Gravitational99

map-matching has already been demonstrated using such sys-100

tems39,40. Cold atom quantum interferometer systems offer101

significant scope for practical gravity-based map-matching102

systems, and – unlike conventional classical gravimeters –103

they do not require frequent calibration to retain their accu-104

racy over long periods of time.105

This paper proposes a method for position fixing using par-106

tial measurements from a gravity gradient sensor formed from107

two cold atom interferometers with a common laser reference108

signal, which allows the cancellation of vibrational noise be-109

tween the two measurements. The standard method for ex-110

tracting gravity gradient measurements using this type of sen-111

sor is to take a sequence of paired measurements from each112

interferometer. The pairs of measurements lie on an ellipse –113

because the phase of the reference laser is unknown and varies114

over time. The gradient is found by fitting an ellipse to a set of115

measurements45–47. This presents a potential problem for the116

use of this method when the gradiometer is moving relative to117

the reference field. If the gravity gradient varies between each118

pair of interferometer measurements, each pair lies on a dif-119

ferent ellipse. As a result, variations in the gravitational gra-120

dient as the sensor moves introduce errors into the measured121

gradients. To avoid these errors, we propose a position fixing122

method that references individual pairs of interferometer mea-123

surements against a gravitational database. The method uses a124

set of possible locations and the gravitational database to pro-125

duce a set of candidate ellipses, and uses a particle filter48–50
126

to select locations that minimise the difference between the127

candidate ellipses and the actual measurement pairs. Over128

time, as the vehicle moves – with each particle in the parti-129

cle filter representing a location and an ellipse – the distri-130

bution of particles will converge on the correct position. We131

describe this as position fixing with partial gravity gradient132

measurements, because we do not construct an ellipse over a133

sequence of measurement pairs in the conventional way, the134

ellipses that we construct correspond to candidate locations135

and the pairs of interferometer measurements are used as in-136

dependent updates to improve the estimated position. We will137

however compare the results against the standard ellipse fit-138

ting method, which shows a small bias in the gravity gradient139

values obtained underestimating the true gravity gradients ex-140

perienced.141

The paper starts in section II by introducing the measure-142

ment model used for the gravity gradiometer. Section III out-143

lines the inertial navigation solution and the vehicle trajectory144

model and section IV describes the particle filter for the posi-145

tion fixing updates. Example results are presented in section V146

and a discussion of the results and conclusions are given in147

section VI.148

II. COLD ATOM GRAVITY GRADIOMETERS149

Cold atom gravity gradiometers consist of two atom inter-150

ferometers separated by a known distance and sharing a com-151

mon Raman laser reference signal13–17,19–21. Clouds of cold152

atoms are prepared and held in a magneto-optical trap inside153

a vacuum chamber. During each measurement, the clouds in154

each chamber are allowed to fall under the action of gravity.155

During the fall, the laser provides a sequence of pulses for156

each cloud: a p/2 pulse is applied to place the atoms in a157

superposition of momentum states (the interferometer ‘beam-158

splitter’), the second pulse (a p pulse) reverses the momen-159

tum states in the superposition (‘reflection’), and another p/2160

pulse recombines the superpositions, which have acquired a161

phase difference due to the different trajectory taken by each162

of the superposed states. The phase difference causes interfer-163

ence fringes which can be measured and related to the gravi-164

tational acceleration experienced by the atoms. For this paper,165

we are interested in the gradient of the vertical component of166

the gravitational acceleration so we place the interferometers167

one above the other, and on a stabilised platform, to measure168

the vertical component of the gravitational acceleration at two169

points separated by a vertical distance Dz. Other configura-170

tions have been proposed for measuring other components of171

the gravity gradient and differential measurements16 but these172

are not considered here.173

The sensor measurements are simulated using a standard174

model to provide two signals, one for each of the interferom-175

eters14,15,176

S0(n) = h(N̄ +dNn)sin(f0 +fn)+ s0 (1)177

S1(n) = h(N̄ +dNn)sin(f1 +fn +dfn)+ s1 (2)178

where h is the measurement efficiency (or the contrast of the179

interference fringes), N̄ is the average number of atoms in180

each cloud, dNn is the atom number shot noise on each mea-181

surement (at time step/measurement n, where the standard de-182

viation of dNn is sN =
p

N̄), fn is the Raman laser phase,183

which is unknown but common to each interferometer in a184

gradiometer, dfn is the measurement phase noise which is as-185

sumed to be Gaussian with a standard deviation sf (both in-186

terferometer would have such phase noise, but the phase noise187

in the upper ‘0’ interferometer is subsumed within the defi-188

nition of fn), and s0 and s1 are both constants representing189

signal biases. f0 and f1 are the phases of interest in each of190

the interferometers, Df0 = ke f f g(z0)T 2 and f1 = ke f f g(z1)T 2,191

where ke f f is the effective wave number of the p/2 interfer-192

ometer pulses, and T is the time between the p/2 and the p193

pulses. For convenience, we will normalise signals by divid-194

ing through by hN̄: S̃0,1(n) = S0,1(n)/hN̄.195

Taking the difference of these two phases provides the value196

of the gradient of the vertical component of the gravitational197



Gravity Gradiometry

Example gravity gradient ellipse** where the 
amplitudes in (a) show the two signals S0 and S1.

System parameter Parameter Value 
Type of atoms Caesium 133 
Mass of atom 2.20693925 x 10-25 kg 
Duty Cycle 0.32 
Measurement frequency 1 Hz 
Measurement efficiency, ! 0.5 
Number of atoms in cloud, " 106 
Shot noise, #! = √" 103 
Time between pulses, & 160 ms 
Effective wave number, '"## 1.4649 x 107 m-1 
Horizontal Raman beamwidth 1 cm 
Vertical separation of sensors, Δ) 0.5 m 
Phase noise, #$% ≤ 20 mrad 
Gravity gradient sensitivity (ellipse) ≤ 7 x 10-8 s-2 

 

** Foster, G. T., J. B. Fixler, J. M. McGuirk, and M. A. Kasevich. “Method of phase extraction 
between coupled atom interferometers using ellipse-specific fitting.” Optics letters 27, no. 11 
(2002): 951-953.

Measurements
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online and it has a resolution of 1 nautical mile – the geoid87

maps the local variations of gravity to allow local mean sea88

level to be defined relative to the standard Earth reference el-89

lipsoid, WGS8443. Higher resolution databases are available90

for most of the land masses. For example, SRTM2gravity44,91

which is modelled from local topographic features, currently92

has a resolution of 90 metres.93

The main difficulty with position fixing using gravitational94

map-matching is that the variations in gravity are very small95

and often difficult to measure. Measuring variations in the96

acceleration due to gravity is possible with sensitive classi-97

cal accelerometers, using sensitive optical measurements of98

falling bodies (‘falling cube’ gravimeters)9,10. Gravitational99

map-matching has already been demonstrated using such sys-100

tems39,40. Cold atom quantum interferometer systems offer101

significant scope for practical gravity-based map-matching102

systems, and – unlike conventional classical gravimeters –103

they do not require frequent calibration to retain their accu-104

racy over long periods of time.105

This paper proposes a method for position fixing using par-106

tial measurements from a gravity gradient sensor formed from107

two cold atom interferometers with a common laser reference108

signal, which allows the cancellation of vibrational noise be-109

tween the two measurements. The standard method for ex-110

tracting gravity gradient measurements using this type of sen-111

sor is to take a sequence of paired measurements from each112

interferometer. The pairs of measurements lie on an ellipse –113

because the phase of the reference laser is unknown and varies114

over time. The gradient is found by fitting an ellipse to a set of115

measurements45–47. This presents a potential problem for the116

use of this method when the gradiometer is moving relative to117

the reference field. If the gravity gradient varies between each118

pair of interferometer measurements, each pair lies on a dif-119

ferent ellipse. As a result, variations in the gravitational gra-120

dient as the sensor moves introduce errors into the measured121

gradients. To avoid these errors, we propose a position fixing122

method that references individual pairs of interferometer mea-123

surements against a gravitational database. The method uses a124

set of possible locations and the gravitational database to pro-125

duce a set of candidate ellipses, and uses a particle filter48–50
126

to select locations that minimise the difference between the127

candidate ellipses and the actual measurement pairs. Over128

time, as the vehicle moves – with each particle in the parti-129

cle filter representing a location and an ellipse – the distri-130

bution of particles will converge on the correct position. We131

describe this as position fixing with partial gravity gradient132

measurements, because we do not construct an ellipse over a133

sequence of measurement pairs in the conventional way, the134

ellipses that we construct correspond to candidate locations135

and the pairs of interferometer measurements are used as in-136

dependent updates to improve the estimated position. We will137

however compare the results against the standard ellipse fit-138

ting method, which shows a small bias in the gravity gradient139

values obtained underestimating the true gravity gradients ex-140

perienced.141

The paper starts in section II by introducing the measure-142

ment model used for the gravity gradiometer. Section III out-143

lines the inertial navigation solution and the vehicle trajectory144

model and section IV describes the particle filter for the posi-145

tion fixing updates. Example results are presented in section V146

and a discussion of the results and conclusions are given in147

section VI.148

II. COLD ATOM GRAVITY GRADIOMETERS149

Cold atom gravity gradiometers consist of two atom inter-150

ferometers separated by a known distance and sharing a com-151

mon Raman laser reference signal13–17,19–21. Clouds of cold152

atoms are prepared and held in a magneto-optical trap inside153

a vacuum chamber. During each measurement, the clouds in154

each chamber are allowed to fall under the action of gravity.155

During the fall, the laser provides a sequence of pulses for156

each cloud: a p/2 pulse is applied to place the atoms in a157

superposition of momentum states (the interferometer ‘beam-158

splitter’), the second pulse (a p pulse) reverses the momen-159

tum states in the superposition (‘reflection’), and another p/2160

pulse recombines the superpositions, which have acquired a161

phase difference due to the different trajectory taken by each162

of the superposed states. The phase difference causes interfer-163

ence fringes which can be measured and related to the gravi-164

tational acceleration experienced by the atoms. For this paper,165

we are interested in the gradient of the vertical component of166

the gravitational acceleration so we place the interferometers167

one above the other, and on a stabilised platform, to measure168

the vertical component of the gravitational acceleration at two169

points separated by a vertical distance Dz. Other configura-170

tions have been proposed for measuring other components of171
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Gravity Map-Matching



Gravity Map-Matching
• The gravitational structure of the Earth at a large scale is complex, but 

it is also well studied
• Standard global gravity databases exist and are freely available

– For example, the EGM2008 gravity model is a global database with a 
resolution of 1 nautical mile

– More detailed databases do exist: e.g. SRTM2gravity model has provided a 
gravity model that has a minimum resolution of 90 metres, based on 
‘forward modelling’ inferring gravity from the local topology

• Measuring the gravity gradient and comparing the measured values 
against the known gravity gradient values near to the estimated 
location of the platform allows corrections to be applied to stabilise the 
navigation solution

– The method proposed here is based on particle filters using the 
characteristic measurements from a paired cold atom interferometer

AM Phillips, et al. "Position fixing with cold atom gravity gradiometers." AVS Quantum Science 4, no. 2 (2022)
JM Davies et al., “Navigating with Quantum Sensors using Gravity Gradients”, NATO SET 311 Proc., Paper 
B55 (2023).



Gravity Reference Databases
• Somigliana at the WGS84 ellipsoid surface extrapolated for altitude

– Uniform field
• Earth Gravitational Model EGM2008*: WGS84 version

– Global, measured, 1 nautical mile resolution
• STRM2gravity** generated by forward modelling of topology

– Nearly global, over land, modelled rather than measured, 90m resolution

* N. K. Pavlis et al., J. Geophys. Res. 117, B04406, https://doi.org/10.1029/2011JB008916 (2012).
** C. Hirt et al., Geophys. Res. Lett. 46, 4618, https://doi.org/10.1029/2019GL082521 (2019). 



Particle Filters
• Particle filters are a type of Bayesian estimation method referred to as 

Sequential Monte Carlo (SMC) methods*,**

• Particle filters take sampled points in state space and use these as 
candidate solutions

– The candidate solutions / particles have a weight (probability), and this 
weight is updated every time a measurement is taken

– The closer the actual measurement is to the measurement predicted by the 
candidate solution / particle, the higher weight it attracts

• After a while, the weight is concentrated on the ‘good’ particles
– To stop the weight being too focused on a few particles, the particles are 

resampled to produce more solutions close to the ‘good’ particles

• Iterating this process gradually selects the solutions that best match the 
measurements that are taken

* M. Arulampalam et al., IEEE Trans. Signal  Process. 50, 174 (2002).
** O. Cappe et al., Proc. IEEE 95, 899 (2007).



Modelling and Simulation
• We use standard models for the inertial navigation systems

– based on: P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated 
Navigation Systems, 2nd ed. (Artech House, Boston, MA, 2013)

– The INS is assumed to be a standard aviation or maritime grade INS
• The position fixing is done by estimating a correction vector to the 

navigation vector



Correction of Inertial Drift 
• We use a correction vector to continually correct our navigation solution

• The particle filter uses                particles, each with a weight

• The reweighting is done with a Gaussian update

– where                                              and weights are renormalized after the 
update

• And resampling is done when
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function

w̃(i)
t = exp

 
� (min |Smeas �S(i)|)2

2s2
S

!
w(i)

t�Dt (6)

where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '

q
s2

N/N̄2 +s2
f =

q
1/N̄ +s2

f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
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because there is an altimeter to maintain a stable altitude esti-
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)
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candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
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by taking equations (1), (2) and (3) and letting the unknown
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function
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where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '
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f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function

w̃(i)
t = exp
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where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '
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f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function

w̃(i)
t = exp
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where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '
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f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function
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where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '
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f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-
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the position estimate is incorrect, the wrong gravity compen-
sation will be applied in the navigation processing, leading to
an instability in the vertical position that is not present in the
horizontal position. To avoid this complication, we assume
that the aircraft is fitted with an altimeter, which provides a
good estimate of current altitude throughout the flight. Such
altimeters are very common on aircraft so this is not an unrea-
sonable assumption.

IV. INTEGRATED GRAVITY GRADIOMETER-INERTIAL

NAVIGATION

As discussed, an inertial navigation system on its own will
drift over time, so we aim to use a sequence of simulated grav-
ity gradient measurements to provide position fixes that will
limit the extent of this drift. The method that we propose con-
strains the drift in position but can also limit the drifts in ve-
locity and attitude.

To combine the high frequency INS solution represented
by this state vector with the lower frequency data from the
cold atom sensor, we define a correction vector, DX(t), which
contains corrections to the INS navigation solution in the lo-
cal NED frame. Because the corrections are applied over
much shorter timescales than the full trajectory, and we will
be adding noise to these vectors at a later stage which will off-
set any issues arising from a local Cartesian approximation.
We also limit the position corrections to the horizontal plane,
because there is an altimeter to maintain a stable altitude esti-
mate.
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To construct a suitable correction vector, we use a parti-
cle filter48–50. Particle filters are general state estimation fil-
ters that are based on the idea of sequential importance sam-
pling and are a type of sequential Monte Carlo (SMC) sam-
pler50. They have been applied to problems in map-matching
for navigation before and have become popular for terrain ref-
erenced navigation48. A particle filter uses a set of possible
candidate solutions (the ‘particles’) and probability to prefer-
entially select out those solutions which best match the mea-
sured values. Each particle is weighted and re-weighted after
each measurement using the probability that the measurement
obtained could have come from that the solution for the cor-
responding particle. Between measurements, the state of each
particle evolves according the dynamical evolution of the sys-
tem, or more generally some prediction process represented
by a proposal distribution. As more measurements are added,
the particle weights will tend to cluster around the solutions
which most agree with the measurements received. When the
particle weights are concentrated on a subset of particles, the

particles are resampled to move more particles into regions
with high weight and away from the regions where particles
have little weight. There are a number of ways to do parti-
cle resampling, but all rely on the distribution generated by
the particle weights. Even particles with very low weight will
normally have some chance of being selected as candidates
even if that chance it relatively very low. In this way, a par-
ticle filter can gradually select good solutions over a series of
measurements, and allow for the fact that the dynamic evo-
lution itself may contain uncertainties. Additional noise can
be added as ‘process noise’ in the prediction step to reflect
this uncertainty. The result is that a particle filter is normally
robust to uncertainties and can handle significant nonlineari-
ties and other features that tend to adversely affect other state
estimation filters.

Here, we use a simple type of particle filter, one called a
‘bootstrap’ filter48–50, to estimate the correction to the iner-
tial navigation solution. Each particle in the bootstrap filter
corresponds to one candidate correction vector, DX (NED),(i)

t ,
where i = 1 . . .Np and Np is the number of particles. Each
candidate correction vector has a weight w(i)

t , which are nor-
malised after each measurement so that ÂNp

i=1 w(i)
t = 1. We set

Np = 500 in this paper, and resample using importance re-
sampling50 when the effective number of particles Ne f f is less
than a given threshold that is half of the total particle number,
Ne f f = 1/(Âi(w

(i)
t )2)< Np/2.

The particles are re-weighted after each interferometer
measurement corresponding to a pair of signals Smeas =
(S̃0, S̃1)T , from (1). To do this, we take the current INS solu-
tion and convert it to the local NED frame (i.e. the frame cen-
tred on the current navigation solution): X(t) ! X (NED)(t).
We then add the i’th particle correction vector to generate a
candidate navigation solution, for which we find the corre-
sponding gravity gradient dg(i)z /dz using the gravity database
and the method described in reference54. This gravity gra-
dient value is then used to generate a candidate ellipse, S(i),
by taking equations (1), (2) and (3) and letting the unknown
phase dfn vary from 0 to 2p . We then calculate the minimum
distance between the candidate ellipse and the pair of mea-
surements taken from the interferometers, min |Smeas � S(i)|,
and re-weight the particle using a Gaussian function
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where the w̃(i)’s are the un-normalised weights after re-
weighting and Dt = 1s � d t is the time step between cold
atom measurements. The standard deviation in the denomina-
tor in the exponential is the expected error in the signal mea-
surements, which is a function of the interferometer noise pa-
rameters, sS '
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f . For the exam-
ples shown in this paper, the standard deviation is in the range
sS = 0.001 to 0.010. After all of the candidate ellipses have
been calculated and all of the weights updated, the weights are
renormalised and resampling is applied (if required).

After re-weighting and resampling, we calculate the aver-



Example – Maritime Trajectory

• North Atlantic, off the West 
Coast of the island of Ireland

– Bottom right to top left

• Approx 800km
• Altitude, -100m
• Speed, 10 m/s
• Duration, 22 hour (simulated) 

• Holonomic constraints on 
motion

• Sensor Parameters based on 
published results from 
University of Birmingham



Example – North-West Irish Atlantic Coast

Section of EGM2008 global gravity database and the Irish sea data used for 
the scenario examined in this work

Pavlis, Nikolaos K., Simon A. Holmes, Steve C. Kenyon, and John K. Factor. 
"The development and evaluation of the Earth Gravitational Model 2008 
(EGM2008)." Journal of geophysical research: solid earth 117, no. B4 (2012).

INFOMAR, https://www.infomar.ie/data [accessed Jan 2022].



Example – Irish Sea Data

Example using straight line trajectory and the Irish sea data.
The horizontal errors (left) for the augmented navigation solution (red) and inertial navigation alone (green).
Straight line trajectory and the Irish sea data (right) with true trajectory (blue), augmented trajectory (red), 
and inertial navigation solution only (blue). 

Blue – Ground truth
Red – Standard INS
Green – INS w/Grav Grad Map-Matching



Example – Irish Sea Data

Example using straight line trajectory and the Irish sea data.
The horizontal errors (left) for the augmented navigation solution (red) and inertial navigation alone (green).
The estimated gravity gradients (right) provided by the particle filter (red) and the actual database values (blue)

Blue – Ground truth
Red – Standard INS
Green – INS w/Grav Grad Map-Matching



Example – EGM2008 Data

Example straight line trajectory using the EGM2008 database with true trajectory 
(blue), augmented trajectory (red), and inertial navigation solution only (green). 

Blue – Ground truth
Red – Standard INS
Green – INS w/Grav Grad Map-Matching



Example – EGM2008 Data

The horizontal errors for the augmented navigation solution (red) and 
inertial navigation alone (green).  

Red – Standard INS
Green – INS w/Grav Grad Map-Matching



Example – Simulated 91 Hour 
Triangular Trajectory, EGM2008 Data

Blue – Ground truth
Red – Standard INS
Green – INS w/Grav Grad Map-Matching



Summary and Conclusions
• Navigation is complicated by instabilities

– Long timescales and distances make things worse, but they are not the root 
cause of the problems

– Dead reckoning needs augmentation – even if you had perfect sensors

• Navigation systems are not linear, and they are not perturbative

• Augmentation is often susceptible to spoofing and jamming

• Quantum Sensing is the Answer!  🤔 

• New processing method for cold atom gradiometers
– Provides a natural method to integrate with and to augment INS systems

• Gravity gradient map-matching allows navigation that is:
– Autonomous, Passive, and Impossible to jam or to spoof



Thanks to partners




