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Motivation

Application of multiple human tracking work

 Monitoring 

 Homeland Security

Assistive Living
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 Variable number of targets

 Targets appearing and disappearing randomly

 Occlusion

 Computational complexity 

 Parameter  selection
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Challenges for Multiple Human Tracking 



 Overview of the proposed tracking system

 Fundamentals of particle PHD filter for multiple human tracking

 Variational Bayesian method for parameter updating

 Background subtraction and DBN likelihood calculation

 Simulation results

 Conclusions and future work
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Outline of the presentation
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Overview of the proposed system
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Background Subtraction

 Easier to identify new-born targets.

Achieve measurement set.

 Code book method for background subtraction [7]
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PHD filter for multiple human tracking

Random finite set (RFS)

An RFS provides a principled solution to the problem of uncertainty  modeling 
to the cardinality of the state set and the measurement set [2].

Let Ξk be the RFS associated with the multi-target state

where Sk (Xk-1) denotes the RFS of survived targets, Bk (Xk-1) denotes the targets 
spawned from the previous set of targets Xk-1 and  Γk is the RFS of the new-born 
targets.
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PHD filter for multiple human tracking

The PHD prediction step is defined as:

where      is the intensity function of the new target birth RFS, ϕ k|k−1(x,ξ) is the 
analogue of the state transition probability.

in which ek|k−1(ξ) is the probability that the target still exists at time k and β k|k−1(x|ξ) 
is the intensity of the RFS that a target is spawned from the previous state ξ.
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PHD filter for multiple human tracking

The PHD updating step is defined as:

where pM is the missing detection probability, ψk,z(x) = (1−pM)gk(z|x) is the single 

target likelihood defining the probability that a measurement z is generated by a 

target with state x, κk is the clutter intensity.



A set of particles denotes the state of surviving targets at time k [3]

𝑥𝑘
𝑖 , 𝑤𝑘

𝑖
𝑖=1

𝑁

where N is the number of particles.

 Weights for new-born targets 𝑤𝑘
𝑖−𝑛𝑒𝑤−𝑏𝑜𝑟𝑛 = 1/𝐽𝑘 where 𝐽𝑘 is the number of the 

particles for new-born targets.

 We need measurement noise covariance information to update the particle PHD 

filter – in practice, its selection is difficult.
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Types of PHD filter – GMM, Particle



 The goal of  the variational Bayesian approach is to build a joint distribution for the state 

model and the measurement covariance and compute the posterior distribution 𝑝(𝑥𝑘,𝑅𝑘 |𝑍𝑘).

 Prediction: Bayesian filtering state model [1]

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘

 Updating: Bayesian filtering measurement model

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘

where F and H are the transition functions of state and measurement model; wk is the state noise  

with covariance Pk and vk is the measurement noise with covariance Rk.
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Variational Bayesian Approach



 The posterior distribution at time k-1 can be represented by a product form, given the inverse-
Gamma distribution is the conjugate prior distribution for the variance of a Gaussian distribution, 

 By assuming the models of the state and measurement noise variances are independent, the 
joint prediction distribution remains as a factored form of a Gaussian and an inverse Gamma 
distribution

 However, calculation of the posterior is coupled by the likelihood function, therefore, we  use a 
factorized free form distribution

where 
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Variational Bayesian Approach

𝑝(𝑥𝑘−1,𝑅𝑘−1|𝑍𝑘−1) = N (𝑥𝑘−1,𝜇𝑘−1 ,Pk−1) ×  

𝑖=1

𝑑

𝐼𝐺(𝜎𝑘−1
2 |𝛼𝑘−1, 𝛽𝑘−1)

𝑝k|k−1(𝑥𝑘,𝑅𝑘|𝑍𝑘) = 𝑝k|k−1(𝑥𝑘 |𝑍𝑘−1)𝑝k|k−1(𝑅𝑘|Z𝑘−1) = N (𝑥𝑘|k−1,𝜇𝑘|k−1 ,Pk|k−1) ×  

𝑖=1

𝑑

𝐼𝐺(𝜎𝑘|𝑘−1
2 |𝛼𝑘|𝑘−1, 𝛽𝑘|𝑘−1)

𝑝(𝑥𝑘,𝑅𝑘 |𝑍𝑘) ≈ 𝑄𝑥 𝑥𝑘 𝑄𝑅(𝑅𝑘)



 Then the approximate posterior density can be determined by minimizing the Kullback-Leibler
(KL) divergence between the  approximation and the true posterior density expressed as 

 Using the alternating optimisation, the probability densities 𝑄𝑥 𝑥𝑘 and 𝑄𝑅(𝑹𝑘) are calculated in turn, 
while keeping the other fixed, yielding 

 Since the above two equations are coupled, they cannot be solved directly, by computing their 
expectations, which is of  the form of a fixed point iteration: we obtain
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Variational Bayesian Approach



 In order to minimize the KL divergence, the parameters of the filter are the solutions to the 
following coupled set of equations

𝛼𝑘,𝑖 =  𝛼𝑘,𝑖 +
1

2

𝛽𝑘,𝑖 =  𝛽𝑘,𝑖 +
1

2
𝑧𝑘 − 𝐻𝑘  𝑥𝑘 𝑖

2 +
1

2
HkPkHk

T

and the estimated measurement covariance matrix  𝑅𝑘 is
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Variational Bayesian Approach 

𝑥𝑘 = 𝑥𝑘−1 + P𝑘|k−1𝐻𝑘
𝑇( 𝑅𝑘 + HkP𝑘|k−1𝐻𝑘

𝑇)−1 (𝑧𝑘 − 𝐻𝑘x𝑘|k−1)

P𝑘|k = P𝑘|k−1 −P𝑘|k−1 𝐻𝑘
𝑇( 𝑅𝑘 + HkP𝑘|k−1𝐻𝑘

𝑇)−1 𝐻𝑘P𝑘|k−1



Additional steps for the variational Bayesian approach for particle PHD filter

 Prediction: the measurement noise parameters are predicted as 

where 𝜌 ∈ (0,1] is a scalar.

 Updating: employing fixed point iteration to compute the parameters as the solution of the 

equations described in previous slide for 𝑙 steps, then compute the covariance matrix 𝑅𝑘 as

𝑅𝑘 = 𝑑𝑖𝑎𝑔{
𝛽𝑘,1

𝛼𝑘,1
, … ,

𝛽𝑘,𝑚

𝛼𝑘,𝑚
}
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Extra Steps for VB-Particle PHD Filtering

 𝛼𝑘−1,𝑖 = 𝜌𝛼𝑘−1,𝑖

 𝛽𝑘−1,𝑖 = 𝜌𝛽𝑘−1,𝑖
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Particle likelihood calculation with DBN

Likelihood for particle
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Particle PHD Updating

After particle sampling step, we can obtain a set of predicted particles with predicted 
weights:

{ 𝑥𝑘
𝑖 ,  𝑤𝑘

𝑖 }𝑖=1
𝑁+𝐽𝑘

The PHD updating step can be defined as [8]:

𝑤𝑘
𝑖 = 𝑃𝑀 𝑥𝑘

𝑖 +  

∀𝑧∈𝑍𝑘

(1 − 𝑃𝑀 𝑥𝑘
𝑖 )𝜑𝑘,𝑧 𝑥𝑘

𝑖

𝑘𝑘 𝑧 + 𝐶𝑘 𝑧
 𝑤𝑘

𝑖

where 

𝐶𝑘 𝑧 =  

𝑗=1

𝑁

(1 − 𝑃𝑀 𝑥𝑘
𝑖 )𝜑𝑘,𝑧 𝑥𝑘

𝑖  𝑤𝑘
𝑖

and 𝜑𝑘,𝑧 𝑥𝑘
𝑖 is the likelihood of particle from both background subtraction and DBN.
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Target Number Calculation & Particle Resampling

The number of targets is calculated by

the sum of all weights for particles and

the particles are resampled as Algorithm

2 in order to avoid the degeneracy problem..
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Simulation & Results

In order to evaluate the proposed variational Bayesian particle PHD filter with 
DBN updating step for multiple human tracking, two sequences from the 
CAVIAR dataset are employed for simulations.

The comparison of mean of error and standard deviation between the 
traditional and our proposed particle PHD filter from the two scenarios are 
shown as

Scenario 1 Scenario 2

Traditional Proposed Traditional Proposed

Mean of error 13.45 11.89 34.54 22.26

Standard deviation 16.68 12.85 19.87 11.85
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Simulation & Results

Tracking results comparison: OSPA (Optimal Subpattern Assignment) [9]

• X is the results from the tracker with m targets

• Y is ground truth information with n targets

• c is the cut-off value

• p is the metric order

• Both the localization error and the cardinality value are both considered to 
evaluate the accuracy of the tracking system. 
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Comparison of OSPA

Simulation & Results
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Conclusions & Future work

 Variational Bayesian approach is employed to estimate more accurate 
measurement covariance parameters for the particle PHD filter.

A DBN classifier which is trained by colour and HOG histogram features to 
mitigate measurement noise and calculate the likelihood for particles, and thereby 
reduce the probability of false alarms and hence improve the performance of the 
PHD filter.

 Simulation results show the improvement from the proposed particle PHD filter 
in both localization and cardinality as well.

 Ongoing work: more datasets will be employed to make comprehensive 
evaluations; and find a way to reduce the computational complexity.
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