
Intro Method Results Summary

GPU-Accelerated Gaussian Processes for Object
Detection

Calum Blair*, John Thompson*, Neil Robertson†
*Institute for Digital Communications,

University of Edinburgh
†Institute for Sensors, Signals and Systems,

Heriot-Watt University

SSPD 2015
9th September 2015

1

Intro Method Results Summary

Contents

Introduction & Motivation

Method

Related Work
Gaussian Processes and Inference
GPU Acceleration

Results

Summary

2

Intro Method Results Summary

Motivation

Pedestrian or object detection
in images with realistic
confidence measures†

†Blair, Thompson, Robertson, Introspective
Classification for Pedestrian Detection, SSPD 2014

Object detection in Sonar
(SAS) imagery*

*Blair, Thompson, Robertson, Identifying Anomalous
Objects in SAS Imagery Using Uncertainty, Fusion
2015

3

Intro Method Results Summary

Goals

Reliable and fast object detection: use Gaussian Processes as
complete or final-stage classifier. Use support vector machines
(SVMs) as baseline. GPU acceleration needed.

4

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Classification Algorithm Structure

O(n)

O(n2)

feature vector

model
classification

O(n3) (for training data)

5

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Gaussian process Classifiers (GPCs)

Given training data X and matching labels y ∈ {0, 1}, do
parameter learning. Perform probabilistic prediction p(y = +1|x∗)
of new data sample x∗.
Stage 1: define latent functions f (x) as Gaussian distribution:
N (µ(x), k(X, x∗)).
Covariance function k can be linear:

k(xi , xj) = σxi · xj . (1)

or squared-error:

k(xi , xj) = σ exp

(
−

(xi − xj)
2

2`2

)
. (2)

where σ, ` learned during training.

6

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Classifier algorithm

Estimate distribution of f∗ which best fits x∗:

p(f∗|X, y, x∗) =

∫
p(f∗|X, x∗, f)p(f|X, y)df. (3)

given f is the distribution of the latent function over X.
Stage 2: ‘squash’ f∗ using sigmoid with output range [0, 1]:

σ(x) =
1

(1 + exp(−f (x))
. (4)

Final class membership probability π:

π , p(y = +1|X, y, x∗) =

∫
σ(f∗)p(f∗|X, y, x∗)df∗ . (5)

training process is O(n3), while testing is O(n2).

7

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Graphical Interpretation

Stage 1: {X, x∗} → f

-10 -5 0 5 10

0.5

1

1.5

2

2.5

3

3.5

Stage 2: f → π

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

8

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Baseline Algorithm

Support Vector Machine Comparison

Test equation:

f (x) =
N∑

i=1

αiK (x,wi) + b (6)

α,w and b learned during training. Use radial basis function
(RBF) kernel: same as (2) above.

Difference with GPCs: w is condensed model of training data, but
X is all samples seen.

9

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Graphical Interpretation

GPC-RBF: X←→ x∗

x∗

X1X5

X4

X3

X2

Comparison to entire training set

SVM-RBF: x∗ ←→ w

x∗

w1

w2w3

w4

Smaller set of supporting
points

10

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Accelerating Matrix Computations

LAPACK (Linear Algebra Package) standard library.
Uses BLAS (Basic Linear Algebra Subprograms): vector, matrix
and vector-matrix algorithms for multiplication and linear
equations.
Highly optimised versions (tweak order of operations and cache
contents), available for Intel x86 (MKL, gotoBLAS, ...) and
NVIDIA CUDA GPU (cuBLAS, MAGMA, nvBLAS).

MATLAB/ Numpy etc. make BLAS calls:C = AB →

C = sgemm(A,B)

single-precision, general matrix-matrix multiply

11

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

BLAS Limitations

Must reformulate high-level operations to match available
subroutines:

exp

(
−

(xi − xj)
2

2`2

)
(7)

expands to:
(xi − xj)

2 = x2i + x2j − 2xixj . (8)

3 separate calls, 3 separate data accesses:
problem when A,B are → 1GB.
GPU model: limited memory, latency
dominates. Here, X (training samples) is
huge.
Now describe modification of GPC
algorithm.

x∗: one

X: one per row

per column

12

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Inference

Goal: find π in (5) via predictive mean E[f∗|X, y, x∗] and predictive
variance V[f∗|X, y, x∗]†.
Training and test covariances form part of larger matrix:

[
f
f∗

]
∼ N

(
0,

[
K (X,X) K (X, x∗)
K (x∗,X) K (x∗, x∗)

])
(9)

Define KX as K (X,X), KX∗ as
K (X, x∗) and K∗ as K (x∗, x∗). Write a
conditional Gaussian on (9) as:

K (X,X)

K (x∗,X) K (x∗, x∗)

K (X, x∗)

f∗|X, x∗, f ∼ N (K (x∗,X)K−1
X f,K∗ − K (x∗,X)K−1

X ,KX∗) (10)

Now have one term in f∗-expression.
†Ch.3, Rasmussen & Williams, Gaussian Processes for Machine Learning (2006).

13

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Abridged Maths

Approximate posterior term with a Gaussian and:

p(f|X, y) ≈ q(f|X, y) = N (̂f,A−1) (11)

Obtain predictive mean as:

Eq[f∗|X, y, x∗] = Kᵀ
X∗∇ log p(y|̂f). (12)

Define predictive variance as:

Vq[f∗|X, y, x∗] = K∗ − Kᵀ
X∗(KX + W−1)−1KX∗ , (13)

Using W , −∇∇ log(p(y|f)), L = cholesky(I + W
1
2KXW

1
2), and

v = L\(W
1
2KX∗), simplify to:

Vq[f∗|X, y, x∗] = K∗ − vᵀv (14)

See paper for complete derivations

14

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Probabilistic Prediction: Full algorithm

Require: X, x∗, y, f̂,W , L, kernel function k(xi , xj)
1: KX∗ = K (X, x∗) I
2: K∗ = K (x∗, x∗) I
3: Eq[f∗|X , y, x∗] = Kᵀ

X∗∇ log(p(y|̂f)) // latent mean

4: v = L\(W
1
2KX∗) I

5: Vq[f∗|X , y, x∗] = K∗ − vᵀv // latent variance
6: π̄∗ =

∫
σ(z)N (z |Eq[f∗],Vq[f∗])dz // prediction

7: return π̄

Figure: Calculate π at test time. Compute-heavy lines marked with I.

15

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

K (X,X)

K (x∗,X) K (x∗, x∗)

K (X, x∗)

Optimisation

Each sample has d ∼ 5000.
Same block-level data reused for
∼ 100 sliding windows in image.

16

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Optimised Matrix Multiplication

x∗: one

X: one per row

per column

C = AB: load tiles of A and B
into fast memory.
(Existing work optimised tile
sizes via automated parameter
exploration.)
For KX∗ and KX , A = X; usual
matrix structure, one sample per
row, no overlap.

X

X

x∗

x∗

17

Intro Method Results Summary GPCs BLAS Inference GPGPGPU

Improvements

When B is x∗: densely packed;
instead of one row per window,
re-use nearby data already in fast
shared memory.
Time to access A and C (the
resulting KX∗ matrix) dominates.
Big reductions in time & memory
consumption. Further
improvements from instruction
level parallelism.

x∗: stride over

X: one per row

packed data

18

Intro Method Results Summary

Results

Timing: test processing speed on single image

Accuracy: test on large dataset

19

Intro Method Results Summary

Timing

Algorithm Processor Implementation Time(s) Speedup

GPC CPU MATLAB BLAS 10.28
GPC GPU GPGPGPU 2.77 3.7×
SVM CPU LIBSVM 66.92
SVM GPU cuSVM 1.74 38.5×

Matrix multiplication stage for 640× 480 image on CPU (12-core
Intel Xeon X5650, 2.67GHz) and GPU (NVIDIA GeForce GTX
680, 1536 cores, 2GB RAM).
cuSVM implementation is faster as SVM needs fewer support
vectors (∼3000 vs ∼14000 GPC training vectors).

20

Intro Method Results Summary

Receiver Operating Characteristic

21

Intro Method Results Summary

Detection Error Tradeoff

22

Intro Method Results Summary

Reliability Diagram

Figure: GPC and SVM Reliability; classifiers closer to black line are more
reliable.

23

Intro Method Results Summary

Conclusion

GPC compared to baseline SVM: similar speed but gain in
reliability.
Best case is 3.7× speedup compared to an optimised
implementation on CPU.
Improvements usually possible even over heavily optimised initial
code, when matched to application.
Code available for download†.

Questions?

†http://homepages.ed.ac.uk/cblair2/

24

http://homepages.ed.ac.uk/cblair2/

Bibliography

Appendix

1

Bibliography

Training posterior

Require: X, y, f, kernel function k(xi , xj)
1: f̂ , Eq[f,X, y] = argmaxf p(f|X, y) // Using Newton’s method
2: KX = K (X,X)
3: W = −∇∇ log(p(y|̂f))

4: L = cholesky(I + W
1
2KW

1
2)

5: return W , L, f̂,KX

Figure: Prepare training posterior. This only needs to be done once and
can be re-used during testing.

2

Bibliography

Derivation of Mean

Laplacian approximation: treat posterior over the training data and
labels in our f∗ term (3) as a Gaussian:

p(f|X, y) ≈ q(f|X, y) = N (̂f,A−1) , (15)

where

f̂ = arg maxfp(f|X, y) , (16)

and (where ∇ represents differentiation):

A = −∇∇ log(p(f|X, y)|f=f̂ . (17)

f̂ can thus be found by applying Bayes’ rule to the posterior
distribution over the training variables,
p(f|X, y) = p(y|f)p(f|X)/p(y|X). Discard p(y|X) as maximising f.
Take log and differentiate p(f|X, y) to get predictive mean:

Eq[f∗|X, y, x∗] = Kᵀ
X∗∇ log p(y|̂f) . (18)

3

Bibliography

Derivation of Variance

Define predictive variance as:

Vq[f∗|X, y, x∗] = K∗ − Kᵀ
X∗(KX + W−1)−1KX∗ , (19)

using W , −∇∇ log(p(y|f)). Defining the symmetric positive

definite matrix B as B = I + W
1
2KXW

1
2 , LLᵀ = B so

L = cholesky(B), and v = L\(W
1
2KX∗) simplify to:

Vq[f∗|X, y, x∗] = K∗ − Kᵀ
X∗W

1
2 (LLᵀ)−1W

1
2KX∗ (20)

Vq[f∗|X, y, x∗] = K∗ − vᵀv (21)

Posterior term in π (5) now approximated as a Gaussian
q(f∗|X, y, x∗) with mean E and variance V.

4

Bibliography

The solution of the division involving the lower triangular matrix L
on line 4 requires too much memory to obtain any benefit from
performing the calculation on a GPU. In our experiments it proved
to be faster to execute this on the CPU; the memory limitations on
the GPU meant that the test covariance matrix KX∗ had to be
partitioned into very small batches, because of the large size of KX .

5

	Introduction
	Method
	Gaussian Process Classification
	Optimal Computation and Acceleration
	GP Inference using Laplacian Approximation
	GPCs on GPU

	Results
	Summary
	Appendix
	Bibliography

