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 The capability to recognize ballistic threats is a critical topic due to the increasing
effectiveness of the warheads and to economical constraints.

 The ability to distinguish between warheads and decoys is crucial in order to mitigate
the number of shots per hit and to maximize the ammunition capabilities.

• Decoys comprises object of different shapes released by the missiles in order to
introduce confusion in the interceptors.
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 Aim: Develop novel classification algorithm that is able to differentiate
between targets of interest and interference factors, such as decoys and
chaffs in an accurate and robust fashion.

 The warheads are characterized by precession and nutation, while the decoys by
wobbling.
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 Since warheads and decoys exhibit different micro-motions during their ballistic
trajectory, the micro-Doppler effect analysis is used to extract reliable information for
target classification.
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Therefore the harmonic response is centred in u = 𝑓.
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The example shows a signal from a wobbling cylinder.
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smoothing window.
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Time Fourier Transform) of the received signal
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 The Spectrogram is the modulus of the STFT (Short
Time Fourier Transform) of the received signal

It allows to evaluate the signal frequency variation on time
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 The CVD (Cadence Velocity Diagram) [1], is defined as
the modulus of the Fourier Transform of the
Spectrogram along each frequency bin

[1] C. Clemente, L. Pallotta, A. De Maio, J. Soraghan, and A. Farina, “A novel algorithm for radar
classification based on Doppler characteristics exploiting orthogonal pseudo-Zernike polynomials,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 417–430, 2015.
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 The CVD is normalized in order to obtain a matrix
whose values lie in the range [𝟎, 𝟏]

Whose each element is considered as a pixel of a
2D-image.
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The output image is given by the convolution product
of the Gabor function and the input image

 The image is given as input to a bank of Gabor filters
on varying the orientation angle and the central
frequency.
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ALGORITHM (5/6)
NORMALIZATION AND FILTERING

Δ ν, 𝜖 =
Δ ν, 𝜖 − min

ν,𝜀
Δ ν, 𝜖

max
ν,𝜀

[Δ ν, 𝜖 − min
ν,𝜀

Δ ν, 𝜖 ]



Spectrogram

Normalization

Bank of Gabor 
Filters

𝐿 ×𝑀

Feature Extraction

CVD

Received Signal

𝑠𝑟𝑥(𝑛)

 ∆(ν, 𝜀)

χ ν, 𝑘

Δ ν, 𝜀

ALGORITHM (5/6)
NORMALIZATION AND FILTERING

 The convolution product can be made in the Fourier
Domain as the product of the transformed input and
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Since both the CVD and its 2D Fourier transform are

characterized by vertical lines the filter parameters can

be tuned to match the lines, which are in different

position for each class.

 The convolution product can be made in the Fourier
Domain as the product of the transformed input and
the harmonic responses of the filter
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𝑞 = 𝑚𝐿 + 𝑙,

with 𝑙 = 0,⋯ , 𝐿 − 1, m = 0,⋯ ,𝑀 − 1,
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 The algorithm has been tested on real data;

 The data set has been realized acquiring the signals scattered by the replicas of the
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• The mean of the three figures of merit is evaluated.
• the available samples have been divided randomly with 70% used for training

and the other 30% for testing.

• the available observation time;

• the dimension of bank of filters;

𝑃𝑈 is smaller than 0.02
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Conclusions and Future Plans

 A novel classification algorithm that is able to differentiate

between targets of interest and interference factors was

presented.

 The algorithm is based on the using of 2-D Gabor Filter.

 The algorithm takes advantage from the FFT algorithm.

 The features are robust with respect to the noise.

 The performance is satisfactory also for low feature vector

dimension.

 The approach was tested on real data with success.
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Thank you!

Any Question?




