
Sensor Signal
Processing for Defence

Conference

RCPE _ WiFi, password chiron1681

Signal Processing in Real World Systems

SSPD Conference: Industrial Panel 10/09/2015

D A Johnson

Roke

UK OFFICIAL

UK OFFICIAL

http://www.roke.co.uk/
http://www.roke.co.uk/

UK OFFICIAL

UK OFFICIAL

• Model Algorithms (eg Matlab in DP floating point)

• Estimate algorithm complexity (MOPS)

• Partition the system

• Either: Estimate type of hardware needed for

solution

– GPP

– DSP

– FPGA

• Or: Modify algorithm until complexity matches

available hardware

– Requirements may have to be relaxed if the

hardware came before the algorithm

• The design process will then differ depending on

target hardware

Design Process

3

Baseband Processing

Unit (BBPU)

4 Channel

Small Signal Transmit

Receive Unit (TRXU)

4 Channel

Small Signal Transmit

Receive Unit (TRXU)
Transmit Receive Unit

(TRXU)

4 Channel

LNA-PA-Duplex Filter

Unit

(LPDU)

4 Channel

LNA-PA-Duplex Filter

Unit

(LPDU)

LNA-PA-Duplex Switch

Unit

(LPDU)

Baseband (BB)

Sub-system

Radio Frequency

(RF) Sub-system

Array Antenna

Smart Antenna

Calibration Unit

(SACU)

Backplane

Interface

(O&M)

UK OFFICIAL

UK OFFICIAL

Design Process – Complexity Estimation

• Get A Rough guide: Calculate/Estimate

– The number of numerical operations needed per second (NOPS)

• A NOP can be Multiply or Add or MAC combined

• Apply “Efficiency factor” conversion to get cycles for real code execution compared to maximum

hardware compute capability

– Input/Output sample rate (I/O bandwidth)

• Dedicated I/O path for input samples

• Inter-processor/inter-core interconnect bandwidth

• Total Bus transfers <10% Bus bandwidth

– Rough memory requirements

• Largest blocks of data

• Hand-waving from previous project code size

• Memory, latency and execution cycles can be traded depending on requirements

4

UK OFFICIAL

UK OFFICIAL

Design/Optimisation Process – GPP

• If Complexity estimation looks promising then proceed

– (Note: the efficiency factor is low, typ. 3% for an X86 PC since attaining max hardware

compute capability is limited by many factors)

• Convert high level description of algorithm to C/C++

– Use libraries (eg IPP, FFTW etc) where possible

– Start with most intensive processing function and Benchmark (measure clock cycles needed

to execute)

– Optimise code and refine efficiency factor

• Estimate number of cores required

• Design / partition software

• Write or auto-generate C/C++ code

• Validate each processing module against Matlab model

• Validate processing chain against Matlab model

5

UK OFFICIAL

UK OFFICIAL

Design/Optimisation Process – DSP

• DSP brings other complications on top of the GPP process:

– Complexity estimation may factor in SIMD instructions (eg 4x16 bit MACs per cycle)

– Custom accelerator block may be available (eg FFT, Viterbi etc)

– Custom instructions (eg CMULT, ACS etc)

• 16 bit fixed point translation from floating point algorithm model

• Optimise only where necessary (code is less portable once intrinsics included)

• Using RTOS and task scheduling in multicore can ease development

• Eliminate dynamic memory allocations if possible

• Assembly coding is absolutely the last resort

– Better to re-write C/C++ code so compiler can give a more efficient translation.

– Assembly coding is too time consuming and difficult to debug

– Improvement often marginal over compiler unless many custom instructions are used.

6

UK OFFICIAL

UK OFFICIAL

Design/Optimisation Process – FPGA

• Fixed point model Matlab

– More effort at the design stage

– Very useful for algorithms including feedback

– VHDL design made easier

• bit widths known

• Test vectors from model give bit true agreement with implementation

• Explore implementation options before committing to VHDL

• Consider auto generation / high level synthesis (HLS)

– HLS offerings from Matlab/Simulink, Xilinx, Altera

• Development timescales are likely to be more critical than implementation efficiency

7

UK OFFICIAL

UK OFFICIAL

Case Study 1: RESOLVE Geolocation

• The RESOLVE system is a wideband, man-pack sized, spectrum monitoring, signal

identification /analysis and direction finding (DF) system.

• Butler Matrix DF accuracy effected by multipath

• N channel DF can resolve multipath but still not distinguish correct path

• Multiple RESOLVE sensors allow Position Fix (PF).

8

UK OFFICIAL

UK OFFICIAL

Case Study 1: RESOLVE Geolocation

• Discrete Probability Density Algorithm used for position fix with unreliable DF and

TDOA.

• Academic paper proposes computation of probabilities at grid points and

multiplication of probability values from different measurements at common grid

points to get probability of emitter location.

9

UK OFFICIAL

UK OFFICIAL

Case Study 1: RESOLVE Geolocation

• Real world problems:

– Gaussian probability density assumed. In practice there are many wild measurements

– Multiplication of a large number of probabilities gives numerical problems at single precision.

– Sensors can be deployed in a cluster rather than distributed. Emitters close to cluster can

disappear between grid points.

– Computation over many fine grid points is not viable

• Real world solutions:

– Compute Log probability with modified (non Gaussian) pdf.

– Summing Log probabilities to combine measurements is ok numerically at single precision

– Use non-uniform grid with higher density around sensor detects emitters close to sensors

10

UK OFFICIAL

UK OFFICIAL

Case Study 2: SmartLink Robust Comms

• SmartLink is Roke’s rapidly deployable secure 3G comms system

• Modification of 3G receiver to be robust against jamming

• Transform excision approach to removing interference

• Modern DSP and RF ASIC Architecture

• Transform code written in C fails to keep up with the 3G sample rates

• Solution: Use the FFT accelerators and pipe-line processing

11

UK OFFICIAL

UK OFFICIAL

Conclusions and Statements for Discussion

• Design the algorithm for ease of implementation

• Dimension the hardware before building it

OR

Modify the algorithm so dimensioning shows it will fit the hardware available

• Assembly language development is only for when you get dimensioning wrong

• It is essential to make use of RTOS, function Libraries and hardware accelerators

• Development timescales and budget are the most difficult thing to meet

12

Sensor Signal
Processing for Defence

Conference

RCPE _ WiFi, password chiron1681

