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How to optimally deploy sensors?

Thermal map of a processor

Example:

@ Field estimation /filtering: localize (varying) heat source(s)
@ Field detection: detect hot spot(s)
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Indoor localization (e.g., museum)

Distributed radar (TU Delft campus)

Design sparse space-time samplers



Sparse sensing

@ Why sparse sensing?

Economical constraints (hardware cost)

Limited physical space
- Limited data storage space

Reduce communications bandwidth

Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Find the best indices {tn,} to sample x(t) such that a desired
inference performance is achieved.

@ Design a sparse sampler w(t) =), 6(t — tm) to acquire

y(t) = w(t)x(t) =Y x(tm)S(t — tm)

m

Inference tasks can be estimation, filtering, and detection
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Sparse sensing vs. compressed sensing

@ Compressed sensing — state-of-the-art low-cost sensing scheme

‘ H Compressed sensing H Sparse sensing
Sparse x(t) needed not needed
Samplers random structured /deterministic
Compression robust practical, controllable
Signal processing sparse signal any statistical
task reconstruction inference
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Discrete Sparse Sensing
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Discrete sparse sensing

@ Assume a set of candidate sampling locations {t1, to, ..., tpm}

@ Design the discrete sensing vector
w = [W(t1)7 W(t2)7 s W(tM)]T

= [W17 wp, ..., WM]T € {0, 1}M

M number of candidate sensors
wm = (0)1  sensor is (not) selected
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Discrete sparse sensing

{O,I}KXM
/—/A
= diag,(w X

HHE

Sensor selection

Sensor placement

Sample selection

Antenna selection

“Design a sparsest w"

X = [X(tl),X(tQ), . 7X(t‘/\/])]T

diag:(+) - diagonal matrix with the argument on its diagonal but with the zero

rows removed.
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Discrete sparse sensing or sensor selection

What is discrete sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired inference performance.

@ Classic solutions:
- convex optimization: design {0,1}" selection vector
[Joshi-Boyd-09]

- greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]

@ Model-driven vs. data-driven (censoring, outlier rejection)
[Rago-Willett-Shalom-96], [Msechu-Giannakis-12]
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Design problem

Problem 1 Problem 2

arg min lwllo arg min f(w)
sto f(w) <A sto  |wl,=K
w e {0,1}M w e {0,1}M
f(w) performance measure K number of selected sensors
A accuracy requirement

Non-convex Boolean problem

11/55



Greedy submodular maximization

e If f(w) or f(X) is submodular
F(X U{s}) — £(X) = F(YU{s}) - (D)
X': set of selected or not selected sensors, X C Y c M
o If f(X) is monotonically increasing, i.e., f(X U {s}) > f(&X)

Greedy algorithm [Krause-Singh-Guestrin-08]

Require: X =0, L

repeat
s* =arg rsr%a)? f(Xx u{s})
X+~ XU{s'}
until || = L
return X

L=Kor M-K
@ linear complexity
12/55 @ near-optimal: ~ 63% [Nemhauser et al., 1978]



Convex relaxation

@ Boolean constraint is relaxed to the box constraint [0, 1]V

@ /p(-quasi) norm is relaxed to either:
(a.) fr-norm: M w,
(b.) sum-of-logs: S-™__In (wp, + &) with § >0
(c.) your favorite approximation

Relaxed problem 1

argmin 17w
sto f(w) <A
w ¢ [0,1]"

What is convex f(w) for estimation, filtering, and detection?
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|. Estimation

@ S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for
Non-linear Measurement Models. IEEE Trans. on Signal Processing,
Volume 63, Issue 3, pp. 684-698, February 2015.

@ S.P. Chepuri, G. Leus, and A.-J. van der Veen. Sparsity-Exploiting
Anchor Placement for Localization in Sensor Networks. EUSIPCO,
September 2013.
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Non-linear inverse problem

@ Unknown parameter 8 € RN

x(t)
y(t) = w(t) h(t; 0, n(t))

- e.g., source localization

@ Candidate sampling locations {t1, to, ..., tym}
Xm~Pm(x;0)
——
Ym = Wmhm(0,nn), m=1,2,.... M

Ym  m-th spatial or temporal sensor measurement;
hm  (in general) non-linear function;

nm  white (additive/multiplicative) noise process.
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f(w) for estimation - Cramér-Rao bound

@ Best subset of sensors yields the lowest error
E=E{6-6)6-6)"}

0  unbiased estimate of 0

@ Closed-form expression for E is not always available
(e.g., non-linear, non-Gaussian)

@ Cramér-Rao bound (CRB) as a performance measure
- well-suited for offline design problems
- reveals (local) identifiability
- improves performance of any practical algorithm
- equal to the MSE for the additive linear Gaussian case
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f(w) for estimation - Cramér-Rao bound

@ Assuming independent observations
- Fisher information (FIM) is additive

o FIM is linear in wpy,:

M

F(w,0) =Y wnFn(6).

m=1

Fn(0) = E { (am%,,é(x;e)) (amgme(x;e))T} c RNXN

@ For non-linear models and/or specific distributions, FIM
depends on the true parameter

Select the “most informative sensors”
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f(w) for estimation - scalar measures

@ Prominent scalar measures (related to the confidence
ellipsoid):

@ A-optimality (average error):
f(w) :=tr{F ' (w,0)}

Q@ E-optimality (worst case error):

f(w) := Amax{F (w,0)}

© D-optimality (error volume):
f(w) :=Indet{F (w,8)}.

Performance measure convex in w, but depends on 6
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@ SDP problem based on /;-norm heuristics (E-optimal design):
argmin 17w
M
sto > WmFm(0) =My =0, V6 €T,
m=1
0<w,p,<1l, m=1,..., M.

@ Prior probability p(@) is known (e.g., MMSE, MAP):

M
Bayesian FIM:  J, + Z wWmEe{Fmn(0)} = Ay

m=1

Jp = _Ee{a% <|n§#>T}
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Sensor placement for source localization

@ 0 contains source location.
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@ Out of M = 80 available sensors ([J), 8 sensors indicated by

(%) are selected. The source domain is indicated by (o).
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Radar placement — TU Delft campus
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@ Out of M = 117 available radar positions, 20 radar positions
are selected. [Inna et al. 2015]
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Dependent (Gaussian) observations

@ Suppose the unknown 8 € RV follows
x ~ N (h(6),X)
@ Fisher information matrix
F(w,0) = [®(w)J(0)]" 7} (w) [®(w)J(6)]
is no more additive/linear in w.
J(e) %56
( wzeT(w)

F(w,0) in its current form is non convex in w
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f(w) for dependent (Gaussian) observations

@ Express
> =al+S forany a#0€R suchthat S s invertible

@ (E-optimal design) constraint (i.e., Amin{F(w,0)} > \)

1

J7(0)S71J(0) — JT(0)S7! [ST! + a diag(w)]  STTIT(0) = My

is equivalent to
S71 4 aldiag(w) s1J(0)
=0,
J7(0)s71 JT(0)S714(0) — My
an LMI —linear/convex in w.
Choose a>0and S >~ 0

Hint: use matrix inversion lemma and ®' ® = diag(w)
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@ SDP problem based on /;-norm heuristics (E-optimal design):

argmin 17w
w

S~ + a7 diag(w) S71J(6)
s.to =0,v0 €T,
JT(6)s! JT(6)S71J() — My
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Sensor placement for source localization

@ Sensors along the horizontal edges are equicorrelated (with
correlation coefficient = 0.5)
@ Sensors along the vertical edges are not correlated
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@ Out of M = 80 available uncorrelated sensors (OJ) and correlated sensors
(¢), 14 sensors indicated by (x) are selected. The source domain is
indicated by (o).

25/55



Is correlation good?

@ Linear model, Gaussian regression matrix
@ Equicorrelated correlation matrix: £ = [(1— p)I + p117]

30

20
best K = 2 sensors

10f

best K = 5 sensors

-10

Worst case error [dB] (i.e., f(w))
o

_30 . . .
0 0.2 0.4 0.6 0.8 1
Correlation coefficient p

@ # of sensors required (and MSE, worst case error) reduces as
sensors become more coherent
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Il. Filtering

@ S.P. Chepuri, G. Leus. Sparsity-Promoting Adaptive Sensor Selection for
Non-Linear Filtering. ICASSP, May 2014.

@ S.P. Chepuri, G. Leus. Compression schemes for time-varying sparse
signals. ASILOMAR, November 2014.
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Adaptive sparse sensing

@ Some applications:
- target tracking
- track time-varying fields
[Masazade-Fardad-Varshney-12], [Chepuri-Leus-14]

@ Unknown parameter 8, obeys the state-space equations

X, m™~Pi,m(X;0k)
e e
measurements: yi m = Wik.m hke,m(0k, Nk,m), m=1,2,..., M,
dynamics: 0k+1 = A0y + uyg.

@ Time-varying selection vector:
T M
wi = [Wk1, Wk, ..., wim]' € [0,1]
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f(w) for filtering - posterior CRB

@ Posterior-FIM can be expressed as

Fou—1({6x-1}5_1)

Fir(wi, {0,-1}K_1,04) = (Q + AcF t ({0,-1}5_1)A]) !

M
+ Z Wie,m F k,m(Ok)

m=1

: . 9ln x: T
Fiom(6i) = ]E{(d'””ggk‘x"’”) (Frogpttd) } € RNXN

@ To reduce the computational complexity, the prior Fisher can
be simply evaluated at the past estimate.
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@ SDP problem based on /;-norm heuristics:

arg min 17wy
w,€[0,1]M
M
st0 Foic1+ Y WimFim(0x) = Mu, V.
m=1

0<wm<1l, m=1,.. M.

geeey

Tk around the prediction

30/55



Target tracking
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@ M = 49 equally spaced sensor grid points
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Structured signals: sparse, joint-sparse, smoothness,...

@ Unknown sparse parameter 8, € RN obeys

measurements: y, = diag,(wy)H 0, + ny
dynamics: @y = ABy_1 + uy

pseudo-measurement: 0 = r(6) + ek

@ r(0y) enforces structure (e.g., sparsity, smoothness,...)
[Carmi-Gurfil-Kanevsky-10], [Farahmand-Giannakis-Leus-Tian-14]

@ Traditional (compressive sensing) samplers
- Random Gaussian/Bernoulli entries
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f(w) for filtering with structured states

@ Inverse error covariance

k\:ll< = k\}(—l + 8r(9k|k_1)8r(9k‘k_1) +Zm:1 Wk,mhk,mhlz—,m
——

dynamics sparsity prior/ pseudo-measurement measurements

hy.m : mth row of the dictionary H
ar(ék‘k_l) : (sub)gradient of r(0x) towards 0 at Ek‘k_l

@ Performance measure f(wy) = tr{P,} depends on 0
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Target tracking: grid-based model
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I11. Detection

@ S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection.
Trans. on Signal Processing, Oct 2015.

@ S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Gaussian
Detection. ICASSP, April 2015. (Best student paper award)



Distributed detection

@ Sensor placement for binary hypothesis testing

m 320

315

pum

310

pm

305

0 300 0
0 200 400 600 800 1000 1200 1400 0 200 400 600 80O 1000 1200 1400
pm um
Ho: No hot-spot Hi: Hot-spot

@ Other applications
- spectrum sensing, anomaly detection
- radar and sonar systems
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Distributed detection

@ Observations are related to

Ho: Xm ~ pm(x|Ho), m=1,2,.... M
Hi: Xm~ pm(x|H1), m=1,2,....M

@ Binary hypothesis testing:

- classical setting (Neyman-Pearson detector)
- Bayesian setting

[Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]

37/55



Sparse sensing for distributed detection

Classical setting Bayesian setting

arg min |lw|,

0,1}M ar min w
we{0,1) g, mn., Iwllo
s.to Pr(w) < o, Pm(w) < 8 sto Pe(w) <e
Pm=1—P(H = Ha|H1) To, M prior probabilities
Pr = P(H = H1|Ho) P. = moPs + 1P

@ Error probabilities (in general) do not admit expressions
suitable for numerical optimization.
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f(w) for detection

39/55

@ Weaker measures can be used instead

@ Kullback-Liebler distance for the classical setting
— D(H1l|Ho) = Ejy, {log I(x)}
— upper & lower bounds Py, for fixed Py

@ Bhattacharyya distance (a special case of Chernoff inform.)
for the Bayesian setting

— B(Ma[[Ho) = —log Bz, {1/ 1(x)}

— upper & lower bounds P,

@ These distances are suitable for offline designs



f(w) for detection

@ Assuming conditionally independent observations:

(KL distance) D(H1|Ho) = Ejp, {log I(x)}
M
= Z Wm E\Hl{log /m(X)}
— —_————
m=1 D
(Bhattacharyya distance) B(H1||Ho) = — log Ejg, {1/ /(x)}
M

— 3" wnlog B (/)
m=1

Bm

1(x) = [Tm—y 2282) likelihood ratio

Im(x) = 22520 Jocal likelihood ratio
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@ Linear program with explicit solution

argmin |lwllo
w

M
s.to Z Wndm > A,
m=1
wm € {0,1},m=1,2... M,
Hint: sorting

Classical setting d, := {DmM_,
Bayesian setting dn, := {Bn}M_,

@ The best subset of sensors:
sensors with largest average log/root local likelihood ratio.
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Example: Gaussian detection

Suppose

Ho: x~N(Bo,0%l) vs. Hi: x~N(O1,0%)

@ Kullback-Leibler and Bhattacharyya distance measures are the
same up to a constant.

@ Distance measure
1 .
d(w) = ;(01 — 00) " diag(w) (01 — 09)

is simply the scaled signal-to-noise ratio
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Example: Gaussian detection

@ Sensor selection is optimal in terms of error probabilities
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Dependent (Gaussian) observations

Suppose

Ho: x~N(0g,X) vs. Hi: x~N(61,X)

@ Distance measure

is no more linear in w.

m = 91 — 90
T(w)=d(w)Xo’ (w)
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f(w) for dependent (Gaussian) detection

@ Express (as before)
> =al+S forany a#0€R suchthat S s invertible
@ Constraint d(w) > X:
m'S'm—-m"S™'[S7! + a'diag(w)] S im > A

is equivalent to

S71 4 aldiag(w) S'm
=0,
m’Ss! m’'S™im— )
an LMI —linear/convex in w.

Choose a>0and S =0

Hint: use matrix inversion lemma and ®' ® = diag(w)
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@ SDP problem based on /1-norm heuristics:
argmin 17w
w

S~ + a7 diag(w) S'm
s.to =0,
m’Ss! m’Stm— )\
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Is correlation good or bad?

@ Equicorrelated Gaussian observations
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-8 -5 K=1
1% 02 04 06 08 1 % 0.2 04 0.6 08 1
correlation coefficient correlation coefficient
Identical observations Non-identical observations

@ Required # of sensors reduce significantly as they become
more coherent
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Continuous Sparse Sensing

@ S.P. Chepuri, G. Leus. Continuous Sensor Placement. Signal Proc.
Letters, Volume 22, Issue 5, May 2015.

48/55



Rough gridding

@ So far, the focus was on discrete sparse sensing

- start with a discrete set of candidates to pick the best ones
@ Rough grid for complexity savings

- candidate set is too small and/or resolution is too coarse

- desired performance might not be achieved
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Fine gridding

@ Suppose
y(t) = w(t)[h"(£)6 + n(t)]

@ How about fine gridding?
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Continuous sparse sensing

@ Off-the-grid sampling point = on-grid point + perturbation

y = diag,(w)(x + diag(x)p)
x’ derivative of x(t) towards t

p perturbation of the grid points

@ Similar to total-least-squares, continuous basis pursuit
[Zhu-Leus-Giannakis-11], [Ekanadham-Tranchina-Simoncelli-11]

@ For
y(t) = w(t)["(£)6 + n(t)]
off-the-grid sample would be

Ym = Wm(hﬁ + pmh/,g)ﬂ + Wy,
= (Wmhm + vmh;n)HO + Wmhm

Vm ‘= WmPm
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Continuous sparse sensing - estimation

@ Mean-squared error of the least-squares estimate
M H H
F(w, v) = o?tr { <Zm_1 wihh + V2 B
—1
+Vm(h;nhg + hmh:r’y-l)) } :
@ Joint sparse optimization problem

argzg‘[lin | 1Z][0,2

sto f(w,v) <),
wm € 0,1}, m=1,2,..., M,
Vm € [—r,r],m=1,2,... M.

r: resolution of candidate grid

||Z|o,2: # non-zero rows of Z
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Example: linear inverse problem

@ On-grid points {t,, =1,2,3,...,11}
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Discrete sparse sensing

mse(0) ~ 0.47

53/55

25

2

15

—_—
—~~
+~
~—
N
s
— 1
—~~
+~
~—
i
=
—_—

F ! XQ)

===

& 15t --h00 LA

—=o proposed sampler

1 2 3 4 t5 6 7 8 9 10

Continuous sparse sensing

mse(0) ~ 0.36



Conclusions and future works

Conclusions:

@ Design space-time sparse samplers
extend Nyquist-based classical sensing techniques

@ Fundamental statistical inference problems:
Estimation, filtering, and detection

@ Applications in networks:
environmental monitoring, location-aware
services, spectrum sensing,. ..

Ongoing and future work:
@ Data-driven sparse sensing, model mismatch.
@ Continuous sparse sensing
@ Clustering and classification
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Thank Youl!

For more on sparse sensing for statistical inference, see:

http://cas.et.tudelft.nl/~sundeep

55/55



