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Novelties

❑Explore a new application for the Adaptive kernel Kalman 
filter (AKKF). 

• Joint tracking and magnetic parameters estimation.

• High-dimensional and high nonlinear problems.

❑The simulations evaluate the performance of the AKKF in 
tracking and estimating magnetic parameters. 
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Background – Magnetic anomaly detection (MAD)
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MAD 

Detect and locate objects by sensing disturbances in the Earth's 
magnetic field caused by ferromagnetic materials. 



Background – Magnetic anomaly detection (MAD)
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Submarine 
Detection

Underwater 
Surveillance

Archaeology

Access control Tracking of moving 
metallic vehicle



Background – Magnetic anomaly detection (MAD)
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Advantages

Stealthy Detection

Passive Operation

Long Detection Range

Secret Agent Mode 



Background – MAD-based metallic target tracking
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➢ The magnetic signature → Unique identifier → Individual target 
tracking and differentiation.

➢ The tracking process: 

Measuring the 
magnetic field 

Analysing 
changes in the 

magnetic 
signatures 

Determine:
• Location

• Speed

• Direction of the 
metallic targets



System Model
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❑ The magnetic moment of the metallic objects

• Ferromagnetic content (hard iron)

• Deflection of the Earth’s magnetic field (soft 
iron)

• Scalar constant D

• Permeability of the vacuum μ0

• Earth’s magnetic field B0

❑Motion model: nearly constant velocity model



System Model
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❑Measurement model
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Bayesian methods
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Purpose 

Track the target’s movement and simultaneously estimate 
its magnetic moment based on measurements at two 

magnetometers.

Hidden states

Position and velocity (𝐱𝑛), magnetic dipole moment (𝐦0), 
scalar constant (D)



Bayesian methods
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Posterior pdf

Framework



Bayesian methods – particle filter (PF)
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Tracking/estimation performance

Poor estimation accuracy and instability in the estimates

Particle degeneracy

Difficult to obtain a sufficient number of particles to represent the posterior 
pdf accurately

Computational cost 

The computational cost of the PF grows exponentially with the number of 
state variables



Bayesian methods – Adaptive kernel Kalman filter (AKKF)
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Applications so far

• Single target tracking

• Sensor fusion

• Multi-target tracking

Potential applications

• Joint tracking and parameters 
estimation

Objectives

• Validity of the AKKF for fixed parameter estimation

• Validity of the AKKF for high-dimensional tracking/estimation 
problems



Bayesian methods – Adaptive kernel Kalman filter (AKKF)
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❑ Embed the joint pdf into high-dimensional kernel 
space as an empirical Kernel mean embedding.

Prediction from Time 

n − 1 to Time n

Update at 

Time n

Draw Proposal Particles 
at Time n 

Delay
❑ Executed in both the data state space and 

kernel feature space
• Based on the system model, the particles are propagated 

and updated in the data space.

• KMEs of predictive/posterior pdfs are predicted and 

updated in the kernel feature space.

*
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Simulation
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• The AKKF uses MAKKF = 100 particles, while MPF = 2000 
particles are used for the PF. 

• The AKKF with a smaller number of particles achieved 
favourable tracking and estimation performance 
compared to the PF with a large number of particles.
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Simulation
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• Compared to the PF with the same number of particles, the AKKF shows
improved performance.

• Compared to the benchmark performance: the AKKF shows satisfactory 
tracking and estimation performance with significantly reduced 
computational complexity. 



Conclusion
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❑AKKF utilisation for joint tracking and magnetic 
parameters estimationSummary

• Efficiency for high nonlinear and high dimensional 
problems

• Lower computation complexity
Advantages
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