

Pat Chambers and Mathini Sellathurai

Heriot-Watt University Edinburgh, UK

Outline

- Background
- System Model
- Signals & Testbed
- Results
- Conclusion

- Cognitive radio (CR) ability to adapt transmit and receive signal parameters to best suit (exploit) dynamic radio environment.
- Key aspects of CR transceiver design.
 - Determine if signals are present.
 - Distinguish what signals are present.
- if signals present -- Simple low complexity energy detectors.
- what signals present More complex problem.

- Multicycle cyclostationary detection.
 - Can be applied iteratively to determine nature of signal that is present (blind).
 - Exploits the fact that multicarrier OFDM signals posses cyclical patterns on each sub-carrier frequency.
 - Performance appears not to be affected by hardware-based fractional frequency offset (FFO).
 - Main drawback is its high computational complexity.

- Other techniques such as:
 - Subspace-based analysis detection.
 - Distribution-based analysis detection.
 - Kullback-Leibler-based detection.
- Offer similar features and performance at expense of computational complexity.

- Autocorrelation-based detection.
 - Can be applied iteratively to determine nature of signal that is present (blind).
 - Exploits the fact that multicarrier OFDM signals posses cyclical prefix in time domain.
 - However performance is affected by hardware-based fractional frequency offset (FFO).
 - Main advantage is that it can exploit a process already present in OFDM receivers -- thus additional complexity is very low.

Autocorrelation-based detection

Autocorrelation-based sensing concept:

- A threshold is derived and a test statistic is then compared.
- Comparison determines presence of OFDM signal or AWGN, which have similar statistical properties.
- OFDM properties can be determined by appropriate iteration of this method.

Autocorrelation-based detection

- Consider OFDM block structure.
- T_d -- length of data samples
- or FFT size.
- T_c -- length of CP.
- CP offers cyclostationarity in time domain.

Autocorrelation-based detection

• Conventionally, at an OFDM receiver, an autocovariance is performed on the input time domain signal, $y\left(t\right)$:

$$\varphi = \mathbb{E}\left\{y\left(t\right)y^{*}\left(t + \Delta t\right)\right\}$$

- Δt -- the lag, set at T_d
- Angle of φ is used to correct for effect of fractional frequency offset (FFO) on modulation symbols.

Autocorrelation-based detection

• **Test statistic:** This can be computed from the maximum likelihood estimate (MLE) of the autocorrelation coefficient of the receive signal, which is:

$$\rho = \frac{\frac{1}{2M} \sum_{t=0}^{M-1} \Re \{\varphi\}}{\frac{1}{2M+T_d} \sum_{t=0}^{M+T_d-1} |y(t)|^2}$$

- M -- No. of input samples, $y\left(t\right)$ such that: $M>2T_{d}+T_{c}$
- Thus the test statistic, ρ , is merely a slightly modified autocovariance, φ .

Autocorrelation-based detection

• Threshold: If the samples, y(t), contain only AWGN samples then ρ has a distribution according to:

$$\rho \sim \mathcal{N}_R \left(0, \frac{1}{2M} \right)$$

- $\sim \mathcal{N}_R$ -- Gaussian distribution over real numbers.
- From this, ho has probability of exceeding a threshold, $\eta_{
 ho}$:

$$P(\rho > \eta_{\rho}) = \frac{1}{2}\operatorname{erfc}\left(\frac{\eta_{\rho}}{\sqrt{2}\sigma_{r}}\right)$$
$$= \frac{1}{2}\operatorname{erfc}\left(\sqrt{M}\eta_{\rho}\right)$$

• where $\operatorname{erfc}(\cdot)$ is the complementary error function.

Autocorrelation-based detection

- The term, $P(\rho > \eta_{\rho})$, may be thought of as the probability of false alarm, P_{fa} , i.e. the probability of a false detection of an OFDM signal.
- P_{fa} is a trade-off between detection accuracy and good system performance at low SNR.
- Rearranging, the threshold, η_{ρ} , may then be computed as:

$$\eta_{\rho} = \frac{1}{\sqrt{M}} \operatorname{erfc}^{-1} (2P_{fa})$$

• Thus: $\rho > \eta_{\rho}$ -- OFDM $< \rho$ -- η_{ρ} NGN

Autocorrelation-based detection

- Appropriate iterations: The algorithm can extract signal parameters.
- By replaying the algorithm assuming each time a different lag: Δt , i.e., T_d , until the threshold, η_{ρ} , is surpassed.
- It is then possible to infer the FFT size of the OFDM signal.
- Incorrect assumptions of T_d will return the same test statistic, ρ , as AWGN.

Signals & Testbed

OFDM signals

3 types of OFDM signals:

- WiMAX, LTE 5MHz & LTE 20 MHz.
- Each has a different FFT size (T_d) and various other parameters as in Table.
- Signals are derived from software simulators provided by Technical University of Vienna.

Parameter	WiMAX	LTE 5 MHz	LTE 20 MHz
Modulation scheme	16 QAM	16 QAM	16 QAM
Data/FFT size, T_d	256	512	2048
CP size, T_c	64	32	144
$T_c/\left(T_d+T_c\right)$	0.2	0.0657	0.0657
Sub-carrier spacing, Δf	22.5 kHz	15 kHz	15 kHz
Sampling rate, F_s	5.76 MHz	7.68 MHz	30.72 MHz
Bandwidth, BW	5 MHz	5 MHz	20 MHz
$M-T_d$	1472	2668	10672

Signals & Testbed

Testbed

- Tx Chassis:
- 4 Tx RF chains (only 1 used)
- Tx carrier frequency 2.45
 GHz.
- 10 MHz local oscillator (LO) clock signal for internal synchronisation.
- Software controlled (Labview & Matlab) – installed on an internal PC controller board running Windows 7.
- Tx power varied to ensure Rx SNR -20 dB to 16 dB (3 dB step size).

Signals & Testbed

Testbed

- Rx Chassis:
- 2 Rx RF chains (only 1 used)
- Downconversion from 2.45
 GHz.
- 10 MHz local oscillator (LO).
- Software controlled (Labview & Matlab, Windows 7).
- Position of Rx in corridor beside lab. where Tx was.
- Non line-of-sight propagation.

Test statistic

- 2000 calculations of ρ at SNR = -20 dB and 16 dB.
 - Testbed and Simulation.
- As SNR increases, mean of $Re\{\rho\}$ increases in simulation.
- However for Testbed, mean of Re{*P*} and Im{*P*} increase.
- This is due to rotational effect of FFO.
 - Decreases in Re{ ρ } and/or Im{ ρ } are also possible, etc.

Test statistic

- FFO: An issue to overcome that has received little attention in literature in the context of this algorithm.
 - Practical implementation issue rather overlooked in simulations.
 - Occurs due to Tx and Rx oscillator mismatches.
- Statement of problem: Given that ρ is proportional to $\Re\{\varphi\}$ and given that the possible values of φ may be stated as:

$$\varphi = \begin{cases} \sigma_x^2 + \sigma_n^2 & \Delta t = 0\\ \sigma_x^2 \exp\left\{j2\pi\delta f\right\} & \Delta t = T_d\\ 0 & \text{otherwise} \end{cases}$$

For the case $\Delta t = T_d$, how to compensate appropriately for rotation due to FFO, δf ?

Test statistic

- As stated in a conventional OFDM receiver, the factor δf is calculated from the autocovariance.
 - A counter-rotation is then applied to modulation symbols to correct for effect of FFO.
- However, applying counter-rotations to φ (hence also to ρ) would change the statistics of ρ
- This negates the effectiveness of the threshold: η_{ρ}

Test statistic

Proposed solution:

• Make N calculations of arphi :

$$\varphi_1, \varphi_2, ..., \varphi_N$$

· Calculate their respective angles:

$$\theta_{\varphi_{(1)}}, \theta_{\varphi_{(2)}}, ..., \theta_{\varphi_{(N)}}$$

• Buffer & average to get: $\frac{1}{N}\sum_{n=1}^N \theta_{arphi_{(n)}}$, and hence new test statistic:

$$\rho = \frac{\frac{1}{2M} \sum_{t=0}^{M-1} \Re \left\{ \varphi \exp \left\{ -j \frac{1}{N} \sum_{n=1}^{N} \theta_{\varphi_{(n)}} \right\} \right\}}{\frac{1}{2M+T_d} \sum_{t=0}^{M+T_d-1} |y(t)|^2}.$$

Calculation of results

- Make 2000 calculations of ho and determine how many times $\eta_{
 ho}$ is exceeded -> 'Probability of detection', P_d .
- Set $P_{fa} = 0.1$.
- Compare Simulations Vs. Testbed Vs. Testbed w/FFO correction.

Probability of detection

- LTE 20 MHz signal ($T_d = 2048$).
- Can clearly see a performance benefit with when FFO correction procedure is applied.
- However for smaller FFT sizes:
 - No requirement to apply FFO correction (next slide).

Probability of detection

• WiMAX ($T_d = 256$).

• LTE 5 MHz ($T_d = 512$).

HERIOT WATT UNIVERSITY

Conclusions

- A testbed implementation of an autocorrelation-based spectrum sensing algorithm.
 - A system model improvement to cope with effect of FFO.

Pros:

- Low complexity: Simple buffering of output of circuit already present in OFDM circuitry.
- Good match with simulation results when improvement is applied.
- Improvement need only be applied when FFT size is large (here: 2048).

Cons:

- Sensing time is increased (50 fold).
- Future work should consider effects of reducing sensing time on performance.

Thank you!

