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OVERVIEW 



 Automatic Target Recognition (ATR) refers to different tasks, one 
of which is the classification of the target: once that a target has 
been detected, it is assigned to a specific class. This process can 
help to distinguish between allied and enemy targets. 

 In a battlefield scenario multiple sources of information are 
often available, such as spatial, temporal, frequency, waveform 
and polarization diversities. 

 Aim: development of an automatic target classification 
algorithm which exploits both spatial and polarization 
diversities. 

INTRODUCTION 
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KROGAGER POLARIMETRIC DECOMPOSITION 
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The Krogager decomposition (Krogager, 1990) is defined as: 

𝑺(𝑅𝐿) =
𝑆𝑅𝑅 𝑆𝑅𝐿
𝑆𝐿𝑅 𝑆𝐿𝐿

= 𝑒𝑖𝜙 𝑘𝑠𝑒
𝑖𝜙𝑠

0 𝑖
𝑖 0

+ 𝑘𝑑
𝑒𝑖2𝜂 0
0 −𝑒−𝑖2𝜂

+ 𝑘ℎ
𝑒𝑖2𝜂 0
0 0

  

where 𝑺(𝑅𝐿) is the circular polarimetric scattering matrix. The real-valued 

quatities 𝑘𝑠, 𝑘𝑑 and 𝑘ℎ can be interpreted as scattering coefficients from a 
sphere, a diplane and a helix, respectively. They are computed as: 

𝑘𝑠 = 𝑆𝑅𝐿  𝑘𝑑 = min 𝑆𝑅𝑅 , 𝑆𝐿𝐿  𝑘ℎ = abs 𝑆𝑅𝑅 − 𝑆𝐿𝐿   

(1) 

(2) 
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KROGAGER POLARIMETRIC DECOMPOSITION 

ADVANTAGES 
 This decomposition is the most 

suitable in dividing man-made 
targets from natural targets. 

 The components 𝑘𝑠, 𝑘𝑑 and 𝑘ℎ are 
roll invariant. 

DRAWBACKS 
 The Krogager decomposition is not 

capable of distinguish between 
different man-made targets. 
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𝜓𝑛,𝑙 =
𝑛 + 1

𝜋
  𝑊𝑛,𝑙
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where 

𝑊𝑛,𝑙 𝜌, 𝜃 =  
𝜌𝑛−𝑚 −1 𝑚 2𝑛 + 1 −𝑚 !

𝑚! 𝑛 + 𝑙 + 1 −𝑚 ! 𝑛 − 𝑙 − 𝑚 !
𝑒𝑖𝑙𝜃

𝑛− 𝑙

𝑚=0

     𝜌 ≤ 1 

(1) 

(2) 

The pseudo-Zernike moments (Bhatia and Wolf, 1954) of an image 𝑓(𝑥, 𝑦) 
are geometric moments computed as the projection of the image itself on 
a basis of 2D-polynomials which are defined on the unit circle. They are 
calculated as: 



PSEUDO-ZERNIKE MOMENTS 

PROPERTIES 
 The pseudo-Zernike moments are independent, since the pseudo-Zernike 

polynomials are orthogonal on the unit circle; 

 With respect to the Zernike moments, the pseudo-Zernike moments are less 
sensitive to noise and are more for a given order. 

 The modulus of the pseudo-Zernike moments is rotational invariant. 
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ALGORITHM DESCRIPTION (1/3) 
INTEGRATED INTENSITY-KROGAGER (IIK) APPROACH – SINGLE SOURCE 
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𝑿′(𝑥, 𝑦) and 𝑿′′(𝑥, 𝑦): vectors whose 
elements are the four polarimetric 
components and the three Krogager 
components, respectively; 

 Feature vector: 𝑭 ∈ ℝ 𝑛+1 2
 

 Score vector 𝒅 ∈ ℝ𝑉: vector whose 
elements are the occurrences (normalized 
to 𝑘) of each class among the 𝑘 nearest 
neighbours to 𝑭 ; 

 𝑉 is the number of possible classes; 

 Fusion rule: 𝝀 = 𝒅′ + 𝒅′′ 

 Decision rule: 

𝑣 =  
argmax 𝝀          if ∃! max𝝀 > 𝑇
𝑢𝑛𝑘𝑛𝑜𝑤𝑛                      otherwise

 



ALGORITHM DESCRIPTION (1/3) 
INTEGRATED INTENSITY-KROGAGER (IIK) APPROACH – SINGLE SOURCE 

Polarization Diversity 𝑿′(𝑥, 𝑦) and 𝑿′′(𝑥, 𝑦): vectors whose 
elements are the four polarimetric 
components and the three Krogager 
components, respectively; 

 Feature vector: 𝑭 ∈ ℝ 𝑛+1 2
 

 Score vector 𝒅 ∈ ℝ𝑉: vector whose 
elements are the occurrences (normalized 
to 𝑘) of each class among the 𝑘 nearest 
neighbours to 𝑭 ; 

 𝑉 is the number of possible classes; 

 Fusion rule: 𝝀 = 𝒅′ + 𝒅′′ 

 Decision rule: 

𝑣 =  
argmax 𝝀          if ∃! max𝝀 > 𝑇
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ALGORITHM DESCRIPTION (2/3) 
INTEGRATED INTENSITY-KROGAGER (IIK) APPROACH – MULTI SOURCE EXTENSION 

Polarization Diversity 

 Fusion rule: 𝝀 =  𝒅′
𝑗

𝐽
𝑗=1 +  𝒅′′

𝑗
𝐽
𝑗=1  

7 



ALGORITHM DESCRIPTION (2/3) 

Polarization Diversity 

Spatial Diversity  Fusion rule: 𝝀 =  𝒅′
𝑗

𝐽
𝑗=1 +  𝒅′′

𝑗
𝐽
𝑗=1  

INTEGRATED INTENSITY-KROGAGER (IIK) APPROACH – MULTI SOURCE EXTENSION 
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ALGORITHM DESCRIPTION (3/3) 
PSEUDO-ZERNIKE BASED FEATURE VECTOR EXTRACTION 

 Reduction of the dynamic range:  

Ω 𝑥, 𝑦 = log10 Ω 𝑥, 𝑦  

 Image normalization, computed in order to have features 
independent of the RCS: 

Ω 𝑥, 𝑦 = Ω 𝑥, 𝑦 − minΩ 𝑥, 𝑦  

Ω 𝑥, 𝑦 = Ω 𝑥, 𝑦 /maxΩ  (𝑥, 𝑦) 

 Feature vector, 𝑛 + 1 2 elements: 

𝑭 = 𝜓0,0 , … , 𝜓𝑛,−𝑛 , 𝜓𝑛,− 𝑛−1 , … , 𝜓𝑛, 𝑛−1 , 𝜓𝑛,𝑛  

 Feature vector normalization: 

𝑭 =
𝑭 − 𝜇𝑭
𝜍𝑭
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The roll invariant property of the Krogager decomposition and the rotation invariant 
property of the pseudo-Zernike moments make the algorithm robust with respect to 
both the relative orientation of the target and the aspect angle. 



SIMULATIONS SET-UP (1/2) 

GOTCHA DATASET 

 Collection of real full-polarimetric circular 
SAR images. 

 Airborne X-Band (9.6 GHz) sensor. 

 8 elevation angles. 

 Bandwidth 640 MHz, range resolution ~23 
cm. 

 2880 full polarimetric images, 360 for each 
pass. 

The full synthetic aperture (360°) has been 
divided in 90 sub-apertures of 4° in azimuth 
each, in order to have approximately equal 
range-azimuth resolution cells. The number 
of available images is reduced to 720. 
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SIMULATIONS SET-UP (2/2) 
TEST SET 

 It is formed by all but the images 
used for the training. 

 Three configurations: classification 
performed by using one, two or 
three images of the target. 

 

TRAINING SET 

 It is formed by images coming 
from the lowest altitude pass. 

 Two configurations: either 10 or 
30 images for each vehicle, 
selected each 36° or 12° in 
azimuth, respectively. 

One Image Two Images Three Images 
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RESULTS (1/2) 
The IIK approach is compared with two similar algorithms: 

 Intensity Approach (IA), presented in (Clemente et al., 2014), uses only the 
four polarimetric images of the target. 

 Krogager Approach (KA) uses only the three Krogager components. 

SINGLE SOURCE CLASSIFICATION 
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IA KA IIK 

IA KA IIK 

10 Training Images 

30 Training Images 
LEGEND  . 

 . 



RESULTS (2/2) 
MULTI SOURCE CLASSIFICATION 

 Overall better performance, but once more the IIK approach achieves the best results. 
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SUMMARY 
 The percentage of correct classification increases as the moment order increases, 

whereas the percentage of unknowns decreases. 

 The IIK approach presents better performance than both the IA and the KA. 

 The best improvements are achieved when the classifier is trained with 10 images. 

IA KA IIK 

IA KA IIK 

10 Training Images 

30 Training Images 
LEGEND  . 

 . 



Conclusions and Future Plans 
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 A novel automatic target classification algorithm for spatially-

separated full-polarimetric SAR images was presented. 

 The algorithm achieves better performance than the approach 

presented in a previous work in terms of both percentage of correct 

classification and percentage of unknowns.  

 It is robust with respect to the relative orientation of the target and to 

the acquisition elevation angle, and it presents low computation 

complexity. 

 The proposed framework can also be used with time series and 

multispectral images, as well as in low bit-rate distributed networks. 

 Future work will deal with the development of a weighted fusion rule 

and the computation of optimal weights on varying the SAR 

depression angle. 



Thank you! 

Any Question? 




