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Motivation: The end goal 
• Identifying anomalous behaviour in the proverbial haystack to 

enhance situation awareness 

 

[WPAFB 2009 Dataset] 
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Approach: Build better models of normality by using more of the signal 

 

• Specifically, we propose the use of intentional priors 

• Priors that are indicative of future intent 

• Could be derived from different signals (e.g. car indicator, AIS, pattern of life) 

• Could be context sensitive 

 

• This talk focuses on person tracking in video with head-pose priors 

• Relevant to automated visual surveillance (e.g. base protection) 

• People perform a broad range of behaviours so represent challenging targets 

• Concept is extensible to other real-world targets 



   

University Defence Research Collaboration (UDRC) 
Signal Processing in a Networked Battlespace 

Motivating Example 

Intuition: Head-pose is an informative intentional prior 

• Head pose can 
provide both spatial 
and social context 

 

• We can use head-
pose to build better 
person trackers 



   

University Defence Research Collaboration (UDRC) 
Signal Processing in a Networked Battlespace 

Related Work 

Target 

• Recent work has shown that performing head-pose estimation 
within the outdoor built environment is reasonable 

• Odobez at Idiap [5] 

• Benfold at Oxford [6] 

• Our latest work at Heriot-Watt (IEEE Sig.Proc.Letters, to 
appear) 
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• A number of trackers consider social context when 
making target predictions (e.g. Pelligrini et al. [7]) 

 

• Sankaranaraynan et al. fused person tracking with a PTZ 
facial tracking system, but did not use head-pose to 
predict target location [8]. 

 

• No prior work has used head-pose to aid target 
tracking  

 The video signal is being under utilised 
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Is the signal present? 

• Is head-pose is well correlated with direction of travel? 

 

• Analysis: 3 datasets - Caviar, PETS and Oxford [10,11,6] 

 

• Using automatic detections [12] and ground truth head-pose 
annotations 
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𝒙 𝒕
− = 𝑭𝒕−𝟏𝒙 𝒕−𝟏 + 𝑩𝒖𝒕−𝟏 

1) Project the state ahead 

Time update (“predict”) Measurement update (“correct”) 

𝑷𝒕
− = 𝑭𝒕−𝟏𝒙 𝒕−𝟏𝑭𝒕−𝟏

𝑻 + 𝑸𝒕 

2) Project the error covariance ahead 

𝝐𝒕 = 𝒛𝒕 −𝑯𝒙 𝒕
− 

1) Compute the innovation 

𝑲𝒕 = 𝑷𝒕
−𝑯𝑻(𝑯𝑷𝒕

−𝑯𝑻 + 𝑹)−𝟏 

2) Compute the Kalman Gain 𝐾𝑡 

𝒙 𝒕 = 𝒙 𝒕
− +𝑲𝒕 𝝐𝒕 

3) Update estimate with 𝑍𝑡 

𝑷𝒕 = (𝑰 − 𝑲𝒕𝑯𝒕)𝑷𝒕
− 

4) Update the error covariance 

The Kalman Filter 
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Motion model: 

 𝐹𝑡 =

1 0 𝛾𝑡 0

0 1 0 𝛾𝑡
0
0

0
0

1
0

0
1

 

𝛾𝑡 = 1 − 𝛼𝑡 

Intentional prior : 𝐵𝑡 = 𝛼𝑡𝑑𝑥,  𝛼𝑡𝑑𝑦, 𝛼𝑡𝑑𝑥,  𝛼𝑡𝑑𝑦
𝑇 

𝑑𝑡  ∷  Distance(𝑥 𝑡−1, 𝑥 𝑡)             

𝜃𝑡
ℎ ∷  head−pose direction at t 

                
𝑑𝑥 = 𝑑𝑡 cos 𝜃𝑡
𝑑𝑦 = 𝑑𝑡 sin 𝜃𝑡  

 

Mixing component: 

 

𝛼𝑡 = (1 + exp (−𝜌(𝑠𝑡 − 𝜏)))−1 

State vector: 

 

𝑥𝑡 = 𝑥, 𝑦, 𝑥 , 𝑦 𝑇 

Observation matrix: 

 

𝐻 =
1 0 0 0
0 1 0 0
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Mixing component:  αt = (1 + exp (−ρ(st − τ)))−1 

𝑆𝑡 ∷  |  𝐵𝑖𝑛 𝜃𝑘
ℎ − 𝐵𝑖𝑛 𝜃𝑘

𝑣

𝑡

𝑘=max (0,𝑡−10)

| 

Strength of prior: 

 

𝜃𝑘
𝑣 ∷ Travel direction         

𝜃𝑘
ℎ ∷ Head−pose direction

                               
𝜌 ∷ Sensitivity    
𝜏 ∷ Base weight

 

[4] 

Head-pose 
binning: 
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Evaluation 

• 5 core trajectories: 

• Gaussian noise added to positions and head-poses 

 

• Comparative baseline:  

• Standard Kalman Filter (i.e. without head-pose) 
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Sigmoid optimisation 

𝜌 
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Best performers: High base-weight for 
head-pose 

Worst performers: Low base-weight for 
head-pose 

Sigmoid optimisation 
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Performance with Deep BN.   
head-pose 

   

• Median improvements: 

• Ben: 7.21% 

• Cav: 19.5% 

 

• Optimising the head-pose classifier for 
the scene could improve this. 
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Conclusions & Future Work 

• Shown how to integrate an intentional prior into the Kalman 
Filter (KF) 

 

• Validation has shown that using head-pose intentional priors 
we can make better target predictions 

 

• Key next steps: 

• How do we integrate anomaly detection? 

• How do we learn and use different kinds of intentional 
prior & context? 
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? 

Questions 
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Deep Belief Net. Classifier 

• Unlike competing approaches, we do not use motion or body 
information to ‘classify’ head-pose 

 

• Poorest performance collates with fewest training examples 


