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Sparse Inferences about Scotland

= It never rains in Edinburgh

= The letter ‘s’ is subject to P,, and P,
—P,,; P! Defence vs Defense
—P.,: P,/ Optimization vs Optimisation

s [f a roundabout doesn’t have trees or grass on it, it is
perfectly okay to drive right over it.

— My apologies to any of you who were approaching a roundabout while |
was driving through!
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Context

= Advances in digital processing are enabling
revolutionary opportunities for radar signal processing
— Sophisticated radar image/volume reconstructions

— Multi-function radars that can simultaneously perform imaging,
detection, moving object tracking and recognition, etc.

— Persistent sensing over space and time
— Combined sensing and communication
— Estimation/inference with uncertainty analysis

= Challenges
— Very large data, processing, and communications tasks

— Traditional models for radar backscattering may not apply over
wide angles
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SAR Data Collection

At each point measure;
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SAR Image Formation

» [raditional approach: tomography

E(h,§2E(f1) I(x,)

= Tomographic image I(x,y) is a matched filter for an isotropic
point scatterer at location (x,y). [Rossi+Willsky]
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Linear Algebra Formulation

— Measurements y (M £ 1) : phase history data as a function of (f,az,el)

— Reconstruction: x (N £ 1): set of (x,y) or (X,y,z) locations with significant
radar scattering energy

y=Ax + v

A o e_j(k;t:,mil?-n.‘l‘k-y,m.yn‘i‘kz,mzn)

M x N

7

Matched filter:
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Example: Ohio Stadium

X-Band Radar
3° aperture
1ft x 1ft res

< Azimuth >
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3D Reconstruction

‘Data Dome’ Representation in k-space

» Massive data size and processing
needs

» Filled aperture is difficult to collect
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Can Sparsity Play a Role?

= At high frequencies, radar backscatter is well-modeled as a
sum of responses from canonical scattering terms.

= EM scattering theory provides a rich characterization of
backscatter behavior as a function of object shape
— Azimuth, elevation, frequency dependence
— Polarization dependence
— Phase response - range
= This scattering theory suggests that the radar response may
be sparse in some representations
— Sparse reconstruction
— Parametric modeling
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Scattering Model
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O

Persistent, Wide-Angle Radar

= Sparsity in sensing
= Sparsity in reconstruction

— Compressive sensing

— Other sparse reconstruction
techniques

— Parametric modeling
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Sparse Reconstruction

Sparsity
— Measurements y (M £ 1) : sparse sampling of full (f,az,el) radar
measurement space

— Reconstruction: x (N £ 1): sparse set of (x,y,z) locations with significant
radar scattering energy

y = Ax + v
M x N

7

A . [e_j(k;t:,mxn.‘l‘ky,myn‘i‘kz,mzn)

Sparse reconstruction:

it =argmin ||y — Az|z + Mz[} p <1
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Compressive Sensing

A satisfies the Restricted Isometry Property (RIP)
= [ly — Az[l3 + [z

Compressive Sensing
o Discrete linear model
« £regularization (=convex problem)
« Provable performance guarantees
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Compressive Sensing: Hype or Help?

Does compressive sensing apply to radar?
= Hype or help?

= Bandwagon or breakthrough?

m Satan or salvation?

= Fraud or foundation?

From: L. Potter, Optical Society of America Incubator, April 2014
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Bah! Humbug! Part 1

O

» Radar signals aren’t compressible in many applications.
= For air-to-ground surveillance, sensor data has high entropy
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Bah! Humbug! Part 2

O

= CS orthodoxy assumes ranges, angles, velocities are
discretized to a sample grid — yet these parameters are
continuous-valued.

= Basis mismatch leads to loss of sparsity; oversampled grids
destroy low coherence

0.8 o 08
0.6
0.4

0.2

Og.-.-

lab test on grid

Benchtop X-band result using ¢, with chirp waveforms and 47:1 compression.
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Bah! Humbug! Part 3

O

» RF receiver noise power, cost, and power consumption scale
with the precision of sample timing, not the average

#samples per unit time.

noise
E

/

signal
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Bah! Humbug! Part 4

O

» Linear Processing: Image analysts understand and accept
the structured and predictable artifacts of linear processing

= Nonlinear processing artifacts are unpredictable and foreign
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Bah! Humbug! Part 5

s CS is an imposter: it's been around for seven decades or

more...

THE BELL SYSTEM
TECHNICAL JOURNAL

VOLUME XXXIX Jory 1960 NUMRER 4

Copyright 1080, American Telephons and Telegraph Company

The Theory and Design of Chirp Radars

By J. R. KLAUDER, A. C. PRICE,
5. DARLINGTON and W. J. ALBERSHEIM

(Manuscript received April 5, 1960)

United States Patent [

Stromswold et al.,

[l COMPRESSIVE RECEIVER
[75] Inventors: ester tromswold, Na;.ahua; John

T. Apostolos, Manchester, both of
N.H.; Robert P, Boland, Malden;
Walter J, Albersheim, Wayban, both

of Mass.

[73] Assignee: Sanders Associates, Inc., Nashua,
N.H.

[21] Appl. No.: 871,297

[22] Filed: Jan, 23, 1978
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CS as Hype

Compressive Sensing is hype, suited to

carnival criers, research funding chasers, and
academic navel gazing.

As far as RF sensing is concerned, it belongs in a
dust bin.
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Rebuttal:

Why Compressed Sensing matters
for practical radar
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Rebuttal 1: Low Entropy

While radar images are on the whole high entropy, many
applications have low entropy signals or components.

Change Detection

“8

Target Chips

=1
E-1x
-z

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland




Rebuttal 2:

= Recent advances effectively address grid quantization
— Fannjiang

BP, oif—grid fixing off, m=64, n=128, s=10,1=0.30873, GERA=0_38146, IEAR=0.2033 BP—LOT, ofi-grid fixing on, m=64, n=128, s=10_p=0 57649, GERR=0.14533, IEAR=0.067&
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From: A. Fannjiang and H-C Tseng, “Compressive radar with off=grid targets:
a perturbation approach,” Inverse Problems 29 (2013) 054008.
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Rebuttal 3: Performance Gains

O

» In quantitative ATR performance, ~2x effective resolution

enhancement is observed using sparse recovery methods.
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Rebuttal 4: New insights, algorithms @

= Semi-definite programming formulation gives tractable

computation

— Impressive gains in speed, convergence in a few short years

= Convex formulation yields provable finite-sample
performance guarantees

» Seamlessly tackles model order selection

[Schniter/Parker/Cevher'12]

Algorithm Error | Time (sec)
Singular value thresholding 3.4e-4 877
[Cai/Candes/Shen08]
Dual method 1.6e-5 177
[Ganesh/Wright/Wu/Chen/Ma'09]
Accelerated proximal gradient 1.8e-5 8
[Ganesh/Wright/Wu/Chen/Ma'09]
Alternating direction methods 22.e-5 5
[Yuan/Yang'09]
Inexact augmented Lagrange method | 4.3e-8 2
[Lin/Chen/Wu/Ma'09]
Bilinear generalized AMP 3.8e-8 1
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Rebuttal 5: multi-mode enabler

O

= Sampling across space (antenna arrays) and slow-time
(pulses) provide avenues for compression beyond stretch
processing

s Compression across antennas and pulses provides flexibility
for multi-mode RF system operation
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The Front Porch

The accessibility and popularity of compressive sensing

provides a format for rich cross-disciplinary interactions and an
invitation for practitioners to reconsider data acquisition and
nonlinear processing.

= Vocabulary of linear algebra to
consider inverse problems and
estimation tasks

= |nvitation to consider signal
structure or parsimony beyond
bandlimitedness

= |nvitation to consider non-
uniform sampling strategies

s Good convex programming
codes.
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How Can Sparsity Play a Role?

Q©e0e000

Persistent Sensing enables:
* High resolution, volumetric imaging of stationary objects and scenes
* Continuous tracking of moving objects
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Scattering Model
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Parametric:
Canonical Scattering Model
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AFRL Gotcha Radar @

15.25 Km

Data Storage:
90 G samples/circle

Image formation:
45 Tflops/sec

Communications:
190 M samples/sec
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Coherent wide-angle SAR Images

500 MHz Bandwidth
110 degrees az

Coherent wide-angle image is not well-matched
to limited persistence scattering behavior

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh, Scotland



Wide-Angle Data Collections

Sc. Ctr Responses <

a

—>

~

(|I)c azimuth

b
= Most backscatter does NOT behave like a point
scatterer over wide angles

» Most scattering centers have limited response
persistence
— 20° or less at X-band [Dudgeon et al, 1994]

» Standard imaging is not statistically (close to) optimal
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Wide-Angle Data Collections

O

Sc. Ctr Responses < — Radar measurements

~

O (|I)c azimuth

When the radar measurement extent is < scattering
persistence, the isotropic assumption is ~satisfied, and

tomographic imaging is ~a matched filter. Q_)
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Wide-Angle Data Collections

Sc. Ctr Respo Radar measurements

>
O dc azimuth

For wide-angle measurements the isotropic scattering
assumption breaks down.
— Tomography is no longer a matched filter :_:
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Scattering Aspect Dependence @

Frequency bupport Image

azimuth
(I)C =_200 -
d)czzoo -
Image response is no longer
characterized by a single ¢.=40° e N\
impulse response shape.
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GRLT Imaging

Frequency Data

L]

gl

1603

2000

GLRT Image

2600

000

Generalizes Rossi+Willsky matched filter result to wide-
angle imaging with limited-persistence scattering

RLM, Potter, Cetin: 2004
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Sparse 3D Reconstruction, Take 1 @

‘Data Dome” Representation in k-space

Coherent IFSAR image pairs

* 1.5”x1.5” resolution

+ 8-12 GHz
« 24° aperture o

* Every 5° elevation 8-
* AB6=0.05° elevation spacing *

* 1296 total image pairs :

* 2% of data used 0l

" 1

W ky(GH2)
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Sparse 3D Reconstruction: Take 2

s 3D radar reconstruction
necessarily will use (very)
sparse measurements

m Is the radar reconstruction
sufficiently sparee tn
overcome m
sparsity?

AFRL Backhoe Data Dome, with
sparse “squiggle path” shown
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Squiggle Path 3D Tomographic
Reconstruction

S 4 Top 25 dB voxels shown

Largest

Squiggle I
PSF =
O)
1+ (U
o (S
[0
=14 ><
O
2 >

= | - _— Smallest

Presented at: the 2014 Sensor Signal Processing for Defence Conference, Edinburgh ' -1 2 o



Squiggle Path Collection: /;
Regularized LS Reconstruction

Top 30 dB voxels shown; p=1
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Backhoe Squiggle Image
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Backhoe Squiggle Image
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Gotcha |, Reconstructions: Camry

s AFRL Gotcha Radar

| : s X-band circular SAR
& By %' = 500MHz bandwidth
s Public data releases
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Vehicle Classification;
Attributed Point Sets

Lamry:

0 ,l#’“!
A -; %
nm - "ﬁ IL%
u TFoud
0 ]
el '
i
1U:H1M;;H_1P___F____T_——ﬂ€r .
P 15

Using standard feature classifiers, >95% correct
classification is obtained for 10-class GOTCHA
vehicle set using 500 MHz X-band circular SAR

Dungan and Potter, 201153
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Newer Directions 1: Probabilistic

= Develop a Bayesian approach to Sparse Modeling

— QOutput are full posterior distributions
» Belief propagation using probalistic factor analysis
« Robust co-estimation of ‘tuning’ parameters

— Computation is comparable to CS
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Modeling Azimuth Dependence

Forward model

Phase History msmts

= Develop a Bayesian approach to Sparse Modeling
— Temporal (=azimuth) dependence model on aspect amplitude
— Estimate of pdf for each variable

From: J. Ash, E. Ertin, L. Potter, E. Zelnio, “Wide Angle Synthetic Aperture
Radar,” IEEE Signal Processing Magazine, 31, 4, July 2014.
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Azimuth Dependence Example

o4

dB

0 45 090 135 180 225 270 315 360
Azimuth (°)

D. T T T T T T T
P2

dB

0 45 00 135 180 225 270 315 360
Azimuth (°)

From: J. Ash, E. Ertin, L. Potter, E. Zelnio, “Wide Angle Synthetic Aperture
Radar,” IEEE Signal Processing Magazine, 31, 4, July 2014.
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Newer Directions 2: Change Detection

= Objective: Robust SAR

_ Time 1
change detection L Timet messurements
— under mixed sampling & TN 77

geometries e ‘
_— E 'Illl'
Interrupted .apertgres 5 V)
— Frequency jamming = ek
— Pass-to-pass misalignment = e
£ 7
§ —
e YV /7
Ij_ﬂ- \'l .'"I
———
= \
Iy
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Newer Directions 2: Change Detection

Proposed
. O Hef. image
X1 (+ uncertainty)
Bayesian joint
Reference PH : R a {Ehangﬂnﬂrfd
g & change detection i

~  Mission image

2 {+ uncertainiy)

Mission PH
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Newer Directions 2: Change Detection

Time-1 image

Time-2 image

Uninterrupted coherent CD

{benchmark)

g 3

Discard 5% of Time1 data, 58% of Time2 data:

Matched filter
trad. CCD
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joint Bayesian

"

WYYy
= A Wy Sl

i-n

From: J. Ash, “A unifying perspective of coherent
and non-coherent change detection,” Proc. SPIE.
9093, Algorithms for Synthetic Aperture Radar
Imagery XXI, 909309, June 2014.




Newer Directions 3: Low-Cost Hardware

= Distributed radar testbed consisting of 14 Micro SDRs.

— Mobile form-factor, lightweight, fully digital programmable

» Colocated MIMO Radar system with 4 TX And 4 RX channels

— airborne collection emulation using 32 TX and 32 RX antenna array
= Stand-alone, high-performance stationary infrastructure

i

1 o of b
5.-"'—5’.'“;; ne
e

Micro SDR MIMO Radar System

Prof. Emre Ertin, ertin.1@osu.edu
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Newer Directions 3: Low-Cost Hardware

» 250 MHz Signal Bandwidth (60 cm resolution)
— ¢ Dual 250 MS/sec 14 bit A/D
— + Dual 1 GS/sec oversampling 16 bit D/A

= Embedded Virtex-6 LX240T FPGA
x 215 mm (W) x 96 mm (H) x 290 mm (D)

s Custom X-Band RF-Frontend with switchable 4TX and 4RX
Antenna Matrix
— ability to chain for multiple units

Prof. Emre Ertin, ertin.1@osu.edu
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Joint Sensing-Comm Experiment

O

» Self-adaptive joint radar/communication system
— PN transmit signal waveform

s Measured and communicated range-Doppler maps
— n range-Doppler map used to adapt (n+1)st waveform set.

Doppler
<
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n
g
e
T TR TR
Measured Communicated
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Newer Directions 4: Transmit Design @

= Transmit signal design can alter A coherence properties
s EX: 10 targets; 2 tx designs; 10:1 basis pursuit undersampling

1 chirp
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Transmit Designs for Coherence @

Histogram of AFA magnitudes
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Newer Direction 5: Relating CS to ML/MDL

= Can we related Sparse Reconstruction to parameter
estimation?

it =argmin ||y — Az|; + Nz[) p <1
= MDL selection given by:
A" = argmin J(2)

A
~In(NV
(&) = lly - Ac? + "2

|lo



O

Well-Separated Sinusoids

0 dB SNR
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Closely-Spaced Sinusoids (Superresolution) .

10 dB SNR
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81 6o VCRB f1 + RMSE f1 +
0.3 X Rayleigh vCRB f5 RMSE f>
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0.1772 ' 0.1951 | 1.6572
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Closing Points

= Advances in sampling and digital processing are moving
radar systems more firmly in the digital realm.

— Much broader set of signaling and waveform adaptation possibilities

» Persistence and wide-angle sensing motivate rethinking the
models and algorithms for radar processing.

— Sparse nonparametric and parametric solutions

— New opportunities for using the time dimension

= A rich collaboration across diverse research communities are
steadily producing algorithms and enabling hardware proving
effective on real-world radar challenges.
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Thank you!
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