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information PYt
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2. How mu
h does the operator learn from PYt|t−1
to PYt

(·|Z)?

3. How mu
h 
an he expe
t to learn from PYt|t−1
if he 
hooses a
tion u?

Mathemati
al framework: sto
hasti
 populations for Bayesian estimation

Well-de�ned probabilisti
 framework, developed by J. Houssineau (PhD

student) and D. Clark (supervisor)

Tra
king algorithm: ISP �lter (Delande, Houssineau, Clark)
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If some Z ⊆ Zu is 
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ted, how does PYt
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Information gain

If some Z ⊆ Zu is 
olle
ted, how does PYt
(·|Z) look like?

Data asso
iation (ISP �lter, unpublished)

Given a possible 
on�guration (h ∈ Ht|t−1, n ∈ N) of the target population,
what are the possible asso
iations with the 
olle
ted observations Z?

Ea
h asso
iation a = (h, n,h ∈ AdmZt
(h, n)) leads to a unique hyp. ĥ ∈ Ht:

Assessed by prob. P a

u (i.e. how likely is the asso
iation produ
ing ĥ?)

Composed of tra
ks ĥ =
⋃

y∈hd
{y :ν(y)} ∪

⋃

y∈h\hd
{y :φ} ∪

⋃

z∈Za
{a:z}

Update from p
y

t|t−1 to py :z
u : usual single-measurement/single-target

update (e.g. Kalman)
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Information gain

Then, what is the information gain for tra
k y?
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]

The tra
k gain Gy :z
u is non-negative, and equals zero i�:

p
y

t|t−1 = py :z
u on X (i.e. nothing learnt on target lo
alization), and

p
y

t|t−1(ψ) = py :z
u (ψ) (i.e. nothing learnt on target presen
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Information gain

Finally, what is the expe
ted gain from a
tion u?
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Further developments

Thank you for your attention!
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