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Problem statement

Multi-object Bayesian filtering

Multi-object tracking problem

@ X: physical space of interest (surveillance area)

@ Targets currently in X described by state x € X

HEAR (position, velocity, etc.)

@ Targets currently away from X assume “empty
state”

@ Goal: what is the state of y in X = {¢} UX?

Bayesian flow
Z

P, P P,

@ Py,: “information” known by operator at time ¢ on all targets
@ Z,;: observations produced and collected at time ¢ by the operator
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@ On top of the detection level: produces a set of observations Z; at each
time ¢

o Known by the operator through a stochastic description

Stochastic description

o Likelihood ¢;(z, z): how likely is obs. z to

f(z)
come from a target with state =7 M

N X,

o Probability of detection pq+(z): how likely

is a target with state = to be detected? m,(,]@

o Probability of false alarm pg, +(2): how b
likely is the sensor to produce a false
alarm with state z? —
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Problem statement

Sensor modelling (cont.)

@ Discrete observation space Z;

@ Localized false alarm process: at most one
false alarm, per cell and per scan

@ In each cell z € Z;, false alarm occurs
with probability pga.¢(2)

Zy

@ Z; projected onto X shapes the sensor
field of view (FoV)

@ QOutside of the sensor FoV, pq; is always
zero (i.e. no target detection)
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Information gain

Construction of information gain: principle

Objective

The operator has access to the predicted information Py,, , and considers
some action u € U; for the next observation. Can we quantify the expected
information gain G, of action u?

Outline

1. Suppose that observations Z C Z,, are collected. How does the updated
information Py, (-|Z) look like?

2. How much does the operator learn from Py, , , to Py, (-|Z)?

3. How much can he expect to learn from Py, , if he chooses action u?

Mathematical framework: stochastic populations for Bayesian estimation

@ Well-defined probabilistic framework, developed by J. Houssineau (PhD
student) and D. Clark (supervisor)

@ Tracking algorithm: ISP filter (Delande, Houssineau, Clark)

V.
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First things first... (cont.)

The population of previously detected targets ?I + 1" hypothesis level
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Delande, H

Sensor management

September 9, 2014

12 / 18



Information gain

First things first... (cont.)
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First things first... (cont.)

The population of previously detected targets ?I + 1" hypothesis level
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Information gain

First things first... (cont.)

The population of previously detected targets ?I + 1" hypothesis level

@ Yj;—1: all possible tracks, up to time ¢

Time ¢
Zo Zy Zy Zs Zy
° ° y = (20,21, 0,0, 21)
° °
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~ ’ K
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@ Hypothesis i C Y;;_1: any subset of compatible tracks

=0, {y}, {¥'} W'y, v v v} OK, {y, 4"}, {y, ¢, y"} not OK
@ cy¢—1(h): probability of hypothesis h (Zhth‘Fl cre—1(h) =1)

— i.e. how likely is h to represent the true target configuration?
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Data association (ISP filter, unpublished)

Given a possible configuration (h € Hy;—1,n € N) of the target population,

what are the possible associations with the collected observations Z7

Appearing
Tracks (h € Hyy—) targets (n € N)  Clutter generators (Z;)
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Information gain

If some Z C Z, is collected, how does Py),(:|Z) look like?

Data association (ISP filter, unpublished)

Given a possible configuration (h € Hy;—1,n € N) of the target population,
what are the possible associations with the collected observations Z7

Appearing
Tracks (h € Hyy—) targets (n € N)  Clutter generators (Z;)

 ha h\ ha ‘
° i

n ‘ ‘ ZagU Z, Zta
| | ° i |

v

] i oo
‘ Za || Za | Zn |

: R g ]
‘ [Pl = lha| § _ |Zal+n

Observation set (Z;) Empty observations (|| + n)

Each association a = (h,n,h € Admg, (h,n)) leads to a unique hyp. h € H:
o Assessed by prob. P2 (i.e. how likely is the association producing iﬁ)
o Composed of tracks h = Uyen lvv@)} VU epn, {y:0t UU. ez {a:2}

o Update from pf‘ .1 to p¥*: usual single-measurement/single-target
update (e.g. Kalman)

v
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Information gain

Then, what is the information gain for track y?
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Then, what is the information gain for track y?
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Information gain

Then, what is the information gain for track y?

Rényi divergence
@ Suppose track y has been updated with observation z € Z U {¢}
@ What have we learnt from p?tJl . topy?

o We define G%* = —L-log {f [pf‘t_l(x)]a[ Z:Z(x)]l_au(dx)}
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@ Suppose track y has been updated with observation z € Z U {¢}
@ What have we learnt from p?tJl . topy?
. [eY 2 11—«
o We define G%* = —L-log {f [pf‘t_l(x)] [p4*(z)] ,u(dx)}
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. [eY 2 11—«
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Information gain

Then, what is the information gain for track y?

Rényi divergence
@ Suppose track y has been updated with observation z € Z U {¢}
@ What have we learnt from p?tJI . topy?

. [eY 2 11—«
o We define G%* = —L-log {f [pf‘t_l(x)] [p4*(z)] ,u(dx)}
@ The track gain G¥°* is non-negative, and equals zero iff:
p?\tfl = p¥** on X (i.e. nothing learnt on target localization), and

pf‘t_l(@[}) = p¥**(¢)) (i.e. nothing learnt on target presence)

- FPu

Delande, Houssineau, Clark (H-W U) Sensor management September 9, 2014

14 / 18



Information gain

Finally, what is the expected gain from action u?
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Information gain

Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z7?

1. Gain from y to y:z: G¥* = —Lslog {f [pg‘t_l(x)]a[ vz (2)] l_a,u(dac)}
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Information gain

Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z7?

1. Gain from y to y:z: GY* = —L-log {f [pg‘tfl(x)]a[ gtz(x)]lf

" ()]
2. Gain from (h,n) to h: G2 = > uehy Gy 4 > pehh U+ 3., Go
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1. Gain from y to y:z: GY* = —L-log {f [pg‘tfl(x)]a[ g:Z(x)]lf

" ()]
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Information gain

Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z7?
1—

" ()]
2. Gain from (h,n) to h: G2 = > uehy Gy 4 > pehh U+ 3., Go
3. Expected gain from (h,n), given Z: Gi"(1Z) = Ypcadm, (hn) PaGa

4. Expected gain from Py, ,_,, given Z:
Gu(-12) = ZheHm,1 ano Ct\t—l(h)0?|t—1(")Gﬁ’"('|Z)
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Information gain

Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z7?
1—

" ()]
2. Gain from (h,n) to h: G2 = > yeha GyrW 4 2 yeh\hy GYo+Y e, GB*
3. Expected gain from (h,n), given Z: Gi"(1Z) = Ypcadm, (hn) PaGa

4. Expected gain from Py, ,_,, given Z:
Gu(t12) = Lhen,,_, Lnzo c-1(h)ey,_, (n) G (12)

1. Gain from y to y:z: G¥* = —Lslog {f [pg‘t_l(x)]a[ vz (2)]
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Information gain

Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z7?

1. Gain from y to y:z: G¥* = —Lslog {f [pg‘t_l(x)]a[ vz (2)]

2. Gain from (h,n) to h: G2 = > yeha GyrW 4 2 yeh\hy GYo+Y e, GB*

1—

" ()]

3. Expected gain from (h,n), given Z: Gi"(1Z) = Ypcadm, (hn) PaGa

4. Expected gain from Py, ,_,, given Z:
Gu(t12) = Lhen,,_, Lnzo c-1(h)ey,_, (n) G (12)

What is the expected gain from action u?

1. Expected gain from Py, , ,: Gu =3 zcz7, Gu(-|Z)
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Further developments

Region-specific and /or track-specific information gain

Information gain G, global by nature, but core element is track-based Rényi
divergence

Gr* = g | [ [ty @] ot (@]t
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Further developments

Region-specific and /or track-specific information gain

Information gain G, global by nature, but core element is track-based Rényi
divergence

QY& =

u

a i 7 log [/ [Pl (@)] " P4 ()] 1_au(dw)}

Elementary changes in the divergence operator allow emphasis on specific
regions of the target state space and/or specific tracks, e.g.

Exclusion of regions from
decision policy

Exclusion of tracks from
decision policy
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Thank you for your attention!
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