
University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

Parallel Processing of the Fast Decimation-in-image
Back-projection Algorithm for SAR

Shaun I. Kelly, Mike E. Davies and John Thompson, University of Edinburgh

Abstract: Fast back-projection algorithms provide substantial speedup when com-
pared with the standard back-projection algorithm. However in many potential appli-
cations of synthetic aperture radar, further speedup is still required in order to make the
application operationally feasible. Multi-core central processing units and graphic pro-
cessing units are considered to speed up a very recently proposed fast back-projection
algorithm (the fast decimation-in-image back-projection algorithm).

Standard Back-projection Algorithm

The back-projection (BP) algorithm is a very accurate and versatile image formation
algorithm for synthetic aperture radar (SAR). Therefore, the BP algorithm can be
used when image quality is of critical importance.

The benefits of the BP algorithm:

• Compensation for wavefront curvature.

• Compensation for antenna beam patterns.

• Compensation for non-flat scene terrain.

In many applications of SAR, the BP algorithm is prohibitively slow. These
include:

• VideoSAR

• Large scene SAR.

• 3D SAR.

• Iterative image formation SAR.

Fast Back-projection Algorithms

In the last two decades there has been many fast BP algorithms proposed. Fast BP
algorithms achieve the same order of complexity as far-field algorithms, O(N2 log(N))
operations, without making the far-field approximation. These algorithms include the
recently proposed fast decimation-in-image (DII) BP algorithm (Kelly, 2014).

Two components of fast algorithms:

1. Sub-image standard BP.

2. Decimation/upsampling.

phase history SAR image

decimation in phase history

phase history SAR image

decimation in image

We wish to exploit parallelism in these two components to further re-
duce the image formation times of Fast BP algorithms.

Parallel Processing

Multi-core Central Processors Units

Pros:

• Very little overhead because no memory transfers are required.

• Close to linear speed up with the number of cores.

Cons:

• Currently their are only a modest number of cores in a multi-core CPU (typically
less than 10).

Multi-core Graphics Processors Units

Pros:

• Large number of cores (up to multiple thousands).

Cons:

• Large overhead due to memory transfers to and from the GPU.

• Single precision floating point currently has more support than double precision.

Implementation

Exploiting Parallelism

Sub-image standard BP

The standard BP algorithm is an embarrassingly parallel problem, therefore, each pixel
was computed as a parallel thread.

Upsampling

Each stage of the image upsampling is dependent on the previous stage so no multi-
stage parallelism was possible. However, we were able to use each pixel in the single
stage upsampling as a parallel thread.

Implementation Details

• The DII BP algorithm was implemented using the C programming language.

• The Open Multi-Processing (OpenMP) API was used to utilise a multi-core CPU.

• The Compute Unified Device Architecture (CUDA) API (version 6.0) was used to
utilise a Nvidia GPU.

• Range FFT in standard BP was implemented using non-uniform FFT with 24 sample
interpolation kernel as suggested in (Greengard, 2004).

• Compiled using GCC (version 4.6.3) with maximum compiler optimisation (“O3”).

Results

The results were generated on the following hardware:

• Intel Core i3-2100 CPU (two processors)

• Nvidia GTX 550 Ti GPU (192 single and 16 double precision cores)

Single versus Double Precision Arithmetic

Single Precision Double Precision

Single precision arithmetic has visible sidelobes from the bright targets.

Computational Performance

256 512 1024 2048
10

−1

10
0

10
1

10
2

10
3

10
4

image dimension (samples)

ti
m

e
 (

s
)

’+’ BP algorithm (single-core CPU)
’◦’ Fast BP algorithm (single-core CPU)
’∗’ BP algorithm (multi-core CPU)
’�’ Fast BP algorithm (multi-core CPU)
’×’ BP algorithm (GPU)
’�’ Fast BP algorithm (GPU)

AFRL Gotcha dataset
first pass and HH polarization
1− 25◦ (2931 aperture samples)
6000× 6000 pixels
antenna beamwidths: 1.15◦ azimuth and
0.57◦ polar
Image formed in 143.45 seconds

Parallel processors can be used in addition to Fast BP algorithms to
significantly speed up the standard BP algorithm.

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and Dstl.


