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An elegant truncated unscented particle filtering scheme considering the provided non-
linear and inequality constraint information is proposed: 
 
 A particle filtering method is applied to cope with non-linear models and non-Gaussian 

state distribution. 
 
 A truncated unscented Kalman filter is applied as the importance function for sampling 

new particles. 
 
The advantages of the proposed truncated unscented particle filter algorithm over the state-
of-the-art ones are presented by multiple Monte-Carlo simulations. 
 

 
 
 

Future works 
 
 Considering the `soft’ constraints which concern of probability in different regions  
 
 A more realistic scenario will be considered for the miss detection and false alarms, and  
the algorithm will be developed under a random finite set framework 

The truncated unscented particle filter 

  Accept-
rejection 

Projection 
method 

Proposed 
method 
 

Mean of MSEs 
(meters) 

10.89 6.92 5.40 

Standard 
derivation of 
MSEs (meters) 

7.24 2.33 
 

0.91 

The comparison between different methods (100 
times Monte-Carlo simulations) 

The truncated unscented Kalman filter is an extension of the traditional unscented Kalman 
filter by considering the constraint information 
 
Initially we have conditional pdf 𝑝𝐶(𝑥𝑘−1|𝑧𝑘−1)  with mean 𝑥�𝑘−1|𝑘−1 and covariance matrix 
𝑃𝑘−1|𝑘−1: 
 

 𝜎-points {𝜒𝑖,𝑘−1|𝑘−1} and corresponding weights {𝑤𝑖,𝑘−1|𝑘−1} are calculated: 
 

 
 
 
 
 
 
 
 
 
According to the 𝜎-points and corresponding weights, the truncated unscented Kalman filter is 
described as: 
 
 Prediction: 

𝑥�𝑘|𝑘−1 ≈� 𝑤𝑖,𝑘−1|𝑘−1
𝑖

𝜒𝑖,𝑘|𝑘−1 

𝑃𝑘|𝑘−1 ≈ ∑ 𝑤𝑖,𝑘−1|𝑘−1𝑖 (𝜒𝑖,𝑘−1|𝑘−1- 𝑥�𝑘|𝑘−1)(𝜒𝑖,𝑘−1|𝑘−1− 𝑥�𝑘|𝑘−1)𝑇 + 𝑄𝑘−1 
 
 Correction: 

𝑥�𝑘|𝑘 ≈ 𝑥�𝑘|𝑘−1+𝐾 𝑘|𝑘(𝑧𝑘-𝑧̂𝑘|𝑘−1) 
𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾 𝑘|𝑘𝑃𝑧,𝑘|𝑘−1𝐾 𝑘|𝑘

𝑇 

Initially, a set of particles and weights {xk−1i  , wk−1
i  }i=1,…,N is applied to approximate pC(xk−1|zk−1)  

 
 Sampling from the importance function: 
 
Truncated unscented Kalman filter is used to estimate an importance function 𝑁𝐶 𝑥𝑘 𝑥�𝑖,𝑘|𝑘, 𝑃𝑖,𝑘|𝑘   
for every particle 𝑖 
 
 Sampling and rejection: 
 
If the obtained sample 𝑥𝑘𝑖   is within the constraint region, the sample is accepted; otherwise, it is 
rejected. 
 
 Weight calculation: 
 
The weight corresponding to the accepted particle 𝑥𝑡𝑖 is calculated as: 
 

𝑤𝑘𝑖 ∝ 𝑤𝑘−1𝑖 𝑝 𝑧𝑘 𝑥𝑘𝑖 𝑝(𝑥𝑘𝑖 |𝑥𝑘−1𝑖 )
𝐶𝑖𝑁𝐶 𝑥𝑘𝑖 𝑥�𝑖,𝑘|𝑘, 𝑃𝑖,𝑘|𝑘

 

 
Finally, the weights are summed to one and the state 𝑥𝑡 can be estimated as:  
 

 𝑥�𝑘 ≈ ∑ 𝑤𝑘𝑖𝑖 𝑥𝑘𝑖 . 
 

A vehicle is simulated to move with the road constraint: 
 

 The boundaries of the road are defined by two arcs centered at the origin of a Cartesian 
coordinate system with radius of r1 = 96m and r2 = 100m 

 

 The vehicle dynamics is described by a constant velocity model 
 

 Range and bearing angle are measured 

General constrained tracking problem 
 

Aim: Obtaining the minimum mean square error (MMSE) estimator: 𝐸(𝑥𝑘|𝑦1:𝑘) 
 

 State model: 
𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝑣𝑘 ~𝑝 𝑥𝑘 𝑥𝑘−1  

 
 Measurement model: 

𝑦𝑘 = ℎ 𝑥ℎ, 𝑒𝑘 ~𝑝 𝑦𝑘 𝑥𝑘  
 

𝒙𝒌: state variable 
𝒚𝒌: observation from different types of sensors  

 
For the real state estimation problem, some other information is applied to refine the 
distribution of the state vector 𝒙𝒌 
 

pC(xk|zk) ∝ �p xk zk       if    xk ∈ ∁k
0               otherwise

 

∁𝒌 is the feasible area defined as: 
 

∁𝑘= {𝑥𝑘|𝑥𝑘 ∈ 𝑅𝑛𝑥, 𝑎𝑘 ≤ 𝐶𝑘(𝑥𝑘) ≤ 𝑏𝑘} 

The truncated unscented Kalman filter 

Simulations 

The simulated trajectory of a vehicle moving on a bend road section 
and the measured positions 

Different methods are compared with respect to the mean square errors (MSEs): 
 

 Importance sampling based probability truncation 

Truncated distribution after the constraints being considered could be approximated as a 
Gaussian 𝑁𝐶(𝑥𝑘|𝑥�𝑘|𝑘, 𝑃𝑘|𝑘) : 
 

𝑥�𝑘|𝑘
𝑐 =

1
𝑁� 𝑤𝑘

𝑐,𝑖

𝑖
𝑥𝑘
𝑐,𝑖 

𝑃𝑘|𝑘
𝑐 = 1

𝑁
∑ 𝑤𝑘

𝑐,𝑖
𝑖 (𝑥𝑘

𝑐,𝑖−𝑥�𝑘|𝑘
𝑐 )(𝑥𝑘

𝑐,𝑖−𝑥�𝑘|𝑘
𝑐 )𝑻 

 
 𝑥𝑘

𝑐,𝑖 ∈ ∁𝑘 and 𝑥𝑘
𝑐,𝑖 is sampled from a function 𝑞(𝑥) 

 𝑤𝑘
𝑐,𝑖 ∝ 𝑁(𝑥𝑘

𝑐,𝑖|𝑥�𝑘|𝑘, 𝑃𝑘|𝑘)/𝑞(𝑥𝑘
𝑐,𝑖) 

 

𝜒0,𝑘−1|𝑘−1 = 𝑥�𝑘−1|𝑘−1     𝑤0,𝑘−1|𝑘−1 = 𝜅
𝑛𝜒+𝜅

 

𝜒𝑖,𝑘−1|𝑘−1 = 𝑥�𝑘−1|𝑘−1 + ( (𝑛𝜒+𝜅)𝑃𝑘−1|𝑘−1)𝑖 
 𝑤𝑖,𝑘−1|𝑘−1= 1

2(𝑛𝜒+𝜅)
 

𝜒𝑛𝜒+𝑖,𝑘−1|𝑘−1 = 𝑥�𝑘−1|𝑘−1 − ( (𝑛𝜒+𝜅)𝑃𝑘−1|𝑘−1)𝑖 
 𝑤𝑛𝜒+𝑖,𝑘−1|𝑘−1= 𝑤𝑖,𝑘−1|𝑘−1 
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The comparison results of the T-UPF  
and standard UPF 

Introduction 
Considering that: 
 
 The posterior distribution may not be accurately represented as a single Gaussian due 

to constraints 
 
 The nonlinear of the state/measurement models 

 
By taking the truncated unscented Kalman filter as the importance function for new 
particles generation, a truncated unscented particle filtering scheme is proposed : 
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