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A typical underwater passive bearings-
only target tracking problem is solved
using nonlinear filters namely cubature
Kalman filter (CKF), Gauss-Hermite filter
(GHF) and sparse-grid Gauss-Hermite fil-
ter (SGHF). The performance of the fil-
ters is compared in terms of estimation
accuracy, track-loss count and computa-
tional time. Theoretical Cramer-Rao lower
bound (CRLB) is used to determine the
maximum achievable performance and to
compare the error bounds of various filters
used.

ABSTRACT

• The probelm of bearings-only tracking
finds it’s application in many real-life sce-
narios like aircraft surveillance, underwa-
ter tracking etc.

• Objective is to find the kinematics of a
moving target such as range, speed etc.
from noise corrupted bearings-only mea-
surements.

• Since measurements are obtained from a
passive sonar mounted on a warship, it
helps in concealing the identity of the host
ship [1].

• The problem becomes challenging due to
the nonlinear nature of the measurements
and non-availability of optimal solution.

• For sub-optimal solutions, several nonlin-
ear filters like the extended Kalman filter
(EKF), unscented kalman filter(UKF), the
cubature Kalman filter (CKF), the Gauss-
Hermit filter(GHF), the sparse-grid Gauss-
Hermite filter (SGHF) etc have been de-
veloped, where the intractable integrals are
approximated numerically.

• In this work, the CKF, GHF [2] and SGHF
[3] are used to solve this nonlinear tracking
problem.

INTRODUCTION

• The state vector denoting target dynamics
can be defined as xt

k = [xt
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k ẋt
k ẏt

k]
T and

observer state dynamics can be defined as
xo
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k ẋo
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k ]
T . Now, the relative state

vector is xk , xt
k−xo

k = [xk yk ẋk ẏk]
T .

• The discrete time state equation can be ex-
pressed as [1]:

xk = Fxk−1 + vk−1−Uk−1,k. (1)
• F is the state transition matrix and vk−1 is

a zero mean Gaussian process noise vector
with covariance matrix Q.

PROBLEM FORMULATION

• Uk−1,k carries the observer accelerations
which is to be included in target dynamics.

Figure 1: Target-Observer scenario
• The measurement equation can be repre-

sented as: zk = γ(xk)+ηk, (2)
where ηk is a zero mean Gaussian noise
with standard deviation σθ . The true bear-
ing measurements, with reference to true
north are defined as, γ(xk)= tan−1 (xk/yk).

• Using Smolyak rule, the integral of interest
could be approximated as

In,L( f )≈
L−1

∑
q=L−n

(−1)L−1−qCn−1
L−1−q ∑

Ξ∈Nn
q

∑
qs1∈Xl1

... ∑
qsn∈Xln

f (qs1 , ...,qsn)ws1 ...wsn (3)

where Xl j is the set of single dimen-
sional quadrature points corresponding to
the univariate quadrature rule Il j , L is ac-
curacy level, [qs1 ,qs2 , ...,qsn ]

T is a sparse-
grid quadrature (SGQ) point, Nn

q = Ξ :
∑

n
j=1 l j = n+ q if q ≥ 0 else ∅. qs j ∈

Xl j and ws j is the weight associated with
qs j . The final set of SGQ points can be
expressed as Xn,L =
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⋃
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q
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⋃

represents union.

• Fig 2, illustrates the construction of sparse-
grid Gauss-Hermite points for a two di-
mensional system with third degree of ac-
curacy level (L = 3).

Figure 2: Multidimensional sparse-grid
Gauss-Hermite points for n = 2, L = 3

SPARSE-GRID GAUSS-HERMITE FILTER

• The filters were initialised using the
method given in [1].

• For simulations, accuracy level of both
GHF and SGHF was taken as 2.

• The parameters considered for tracking

SIMULATION RESULTS

problem are mentioned in the table below.
Parameters values

Initial range (r) 5 km
Target speed (s) 4 knots
Target course −140o

Observer speed 5 knots
Observer initial course 140o

Observer final course 20o

Observer manoeuver 13thto17th min
• Sampling interval, T = 1min and observa-

tion lasted for 28min. A total of 500 monte
carlo runs were done for comparing vari-
ous filter performances as shown in table
below.
• RMSE was calculated considering a track-

loss condition, in which a track was de-
fined divergent when the position error at
any time index exceeds 5km.

Filters Track-loss Compu. time
CKF 5.6% 5.04sec
GHF 4.6% 9.48sec

SGHF 5% 6.9sec

Figure 3: RMS position error of different
filters

• Performance of CKF, GHF and SGHF was
studied and compared for a passive BOT
problem.
• Better computational efficiency of SGHF

when compared to GHF and high accuracy
levels than CKF, makes it’s performance
superior to both the filters.
• Hence, SGHF can be proposed as an alter-

nate filtering algorithm for the kind of BOT
problem discussed in this work.
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