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ABSTRACT

A typical underwater passive bearings-
only target tracking problem 1s solved
using nonlinear filters namely cubature
Kalman filter (CKF), Gauss-Hermite filter
(GHF) and sparse-grid Gauss-Hermite fil-
ter (SGHF). The performance of the fil-

ters 1s compared in terms of estimation
accuracy, track-loss count and computa-
tional time. Theoretical Cramer-Rao lower
bound (CRLB) 1s used to determine the
maximum achievable performance and to
compare the error bounds of various filters

1sed.

INTRODUCTION

The probelm of bearings-only tracking
finds 1t’s application in many real-life sce-
narios like aircraft surveillance, underwa-
ter tracking etc.

Objective 1s to find the kinematics of a
moving target such as range, speed efc.
from noise corrupted bearings-only mea-
surements.

Since measurements are obtained from a
passive sonar mounted on a warship, it
helps in concealing the 1dentity of the host

ship [1].

The problem becomes challenging due to
the nonlinear nature of the measurements
and non-availability of optimal solution.
For sub-optimal solutions, several nonlin-
ear filters like the extended Kalman filter
(EKF), unscented kalman filter(UKF), the
cubature Kalman filter (CKF), the Gauss-
Hermit filter(GHF), the sparse-grid Gauss-
Hermite filter (SGHF) etc have been de-
veloped, where the intractable integrals are
approximated numerically.

In this work, the CKF, GHF [2] and SGHF
|3] are used to solve this nonlinear tracking
broblem.

PROBLEM FORMULATION

The state vector denoting target dynamics
can be defined as x| = xt vt & y]' and
observer state dynamlcs can be defined as
X{ = [x] y7 xk yk] . Now, the relative state

vector 1S X = Xk Xz = [xk Vi Xk y’k]T.

The discrete time state equation can be ex-
pressed as [1]:

X = FXp—1 +vi—1 —Ug—1x- (1)
F 1s the state transition matrix and v;_q 1S
a zero mean Gaussian process noise vector
with covariance matrix Q.

Ui—1 carries the observer accelerations
which 1s to be included 1n target dynamics.
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Figure 1: Target-Observer scenario
The measurement equation can be repre-

sented as: 2 = Y(X¢) + Mk (2)

where 1, 1s a zero mean Gaussian noise
with standard deviation og. The true bear-
ing measurements, with reference to true
north are defined as, y(x;) = tan~"' (x;./yx).

SPARSE-GRID GAUSS-HERMITE FILTER

Using Smolyak rule, the integral of interest

could be approximated as
L—1
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where X;, 1s the set of single dimen-
sional quadrature points corresponding to
the univariate quadrature rule /;;, L 1s ac-

curacy level, [gs,,qs,,---,qs,]" 1S a sparse-
grid quadrature (SGQ) point, N, = &

silj=n+q it g>0 else I. g5 €
X;. and wy; 1s the weight associated with

qs;- The final set of SGQ points can be

expressed as X, 7 = U pl o nU:ENn (X, ®
X, ®...®X), ), where | represents union.

Fig 2, illustrates the construction of sparse-
grid Gauss-Hermite points for a two di-
mensional system with third degree of ac-
curacy level (L = 3).

Figure 2: Multidimensional sparse-grid
Gauss-Hermite points forn =2, L =3

SIMULATION RESULTS

The filters were 1nitialised using the
method given in [1].

For simulations, accuracy level of both
GHF and SGHF was taken as 2.
The parameters considered for tracking

problem are mentioned 1n the table below.

Parameters values
Initial range (r) S km
Target speed (s) 4 knots

Target course —140°
Observer speed S knots
Observer 1nitial course 140°
Observer final course 207
Observer manoeuver | 13"t017" min

Sampling interval, 7 = 1min and observa-
tion lasted for 28min. A total of 500 monte
carlo runs were done for comparing vari-
ous filter performances as shown in table
below.

RMSE was calculated considering a track-
loss condition, in which a track was de-
fined divergent when the position error at
any time index exceeds Skm.

Filters | Track-loss | Compu. time
CKF 5.6% 5.04sec
GHF 4.6% 0.48sec

SGHF 5% 6.9sec
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Figure 3: RMS position error of different
filters

DISCUSSIONS AND CONLUSIONS

Performance of CKF, GHF and SGHF was
studied and compared for a passive BOT
problem.

Better computational efficiency ot SGHF
when compared to GHF and high accuracy
levels than CKF, makes it’s performance
superior to both the filters.

Hence, SGHF can be proposed as an alter-
nate filtering algorithm for the kind of BOT
broblem discussed 1n this work.
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