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Background

In environments of scarce hygiene it is of primary importance to detect potentially harmful
concentrations of pathogens in drinking water. In many situations, however, accurate analysis
of water samples is prohibitively complex and often requires highly specialised apparatuses and
technicians. In order to overcome these limitations, a method to employ video processing to
assist microfluidics water filtering apparatuses is proposed since microfluidics is an emerging
area of research for waterborne pathogen sample processing and detection [1]. Through the
automated analysis of videos captured at the output of such devices it is possible to extract
useful information that could control an autonomous calibration, hence eliminating the need of
an expert and possibly leading to the construction of readily employable water quality assessing
devices.

Objectives

1. Microfluidics: design of an efficient microfluidics device

cost-efficient

saves resources

separates viable pathogens from harmless particles

2. Analysis: incorporate optical system to analyse the water sample

automated detection

classification based on object behaviour during physical sorting

Microfluidics

(a) (b)

Figure :
Microfluidic design: (a) illustrates how particles of a particular size are sorted into a narrow size band,
relative to the width of the channel, and can therefore be concentrated and collected by appropriate
design of the outlet area. (b) shows the output of a DEP electrorotation device. The electrodes (black)
generate an electric field such that the particles are kept in a specific area, but can rotate within it [2].

Passive hydrodynamics: suitable flow rates are used to force particles with different size and
deformability into different channels, therefore it is possible to sort viable from non-viable
pathogens. Helpful for early determination of pathogen presence.

Dielectrophoresis: Biological cells are polarisable and therefore can be manipulated and trapped
using an inhomogeneous electric field. Since viable and non-viable pathogens show different
behaviours under the force of the same electric field, tracking with different motion models
can help to detect and analyse the viability of the cells in the sample.

Object detection

1. Binarisation: The input image is made binary via thresholding.

2. Circle detection: circular Hough transform: given an image I ∈ Rn×m, a votes array Vg ∈ Rn×m

for each guess radius rg is computed as follows:

Vg =
k

∑
i=1

C(pi , rg),

where C(pi , rg) ∈ Rn×m is an array of ones on the perimeter of a circle with center pi and
radius rg and zeros everywhere else. k is the number of perimeter candidate pixels. In every
vote array Vg , those elements that are over a certain threshold determine a detected circle in
the image I with the coordinates of such an element as its centre and rg as its radius.

3. Classification: The circle detection provides not only the position of the detected objects but
also their radius. Thus, one can classify particles according to their surface area.

4. Cluster separation: To locate objects within an estimated agglomerate, a small subsection of
the image containing the agglomerate is convolved with a circle having the mean size of the
pathogen of interest. The position and radius that yields the highest value in the convolved
image are taken as centre and radius of a detected object. The detected object is then
subtracted from the image and the process is repeated until the remaining agglomerate has
an area which is considerably less than the mean size of a pathogen.

Object tracking and classification

Multi-object filtering using Hypothesised filter for Independent Stochastic Populations (HISP)
[3]: Approximated but tractable version of a multi-object Bayes filter.

Object classification using different motion models in the filter, so the likelihood of a behaviour
gives an estimate about the quality of an object.

Results

(a) ○: detections using Hough transform alone.
○: detections in object clusters

(b) Tracking: the blue target was trapped
in the electromagnetic field, the magenta
object keeps moving to the right.

(c) Tracking: here, nothing was trapped
in the field, the incoming red target is
still unclassified.

Figure :
Detection (a) and tracking/classification results (b),(c) based on real data acquired from a microfluidics
device. Two behaviours were analysed: turning upwards towards the electromagnetic field, and heading
onwards to the right. Tracks are shown in green, whereas unclassified objects are marked in red, sorted
in blue and unsorted in magenta.

Conclusion

Microfluidics devices yield high portability and easy employability.

Video processing helps to assess water contamination quickly and accurately.

Different classifications:

1. physical separation of objects with different physical properties (size, deformability)

2. classification by size using the proposed detection method

3. classification by object behaviour (cell trap using an electromagnetic field)
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